Differential Equations

Question 1.
If $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$, then
(a) $\frac{x}{y}+y^{2}=c$
(b) $\frac{y}{x}+x^{2}=c$
(c) $\frac{x}{y}-y^{2}=c$
(d) $\frac{y}{x}-x^{2}=c$

Answer:
(c) $\frac{x}{y}-y^{2}=c$

Question 2.
The solution of $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{\sqrt{1+x^{2}}}$ is
(a) $y=\frac{1+x^{2}}{x}+\frac{c}{x}$
(b) $y=\frac{\sqrt{1+x^{2}}}{x}+\frac{c}{x}$
(c) $y=\frac{x}{\sqrt{1+x^{2}}}+c x$
(d) none of these

Answer:
(b) $y=\frac{\sqrt{1+x^{2}}}{x}+\frac{c}{x}$

Question 3.
The solution of differential equation $\frac{d y}{d x}-3 y=\sin 2 x$ is
(a) $y=e^{-3 x}\left[\frac{\cos 2 x+3 \sin 2 x}{13}\right]+c$
(b) $y=e^{-3 x}\left(\frac{\cos 2 x-3 \sin 2 x}{13}\right)+c$
(c) $y e^{-3 x}=-e^{-3 x} \frac{(2 \cos 2 x+3 \sin 2 x)}{13}+c$
(d) none of these

Answer:
(c) $y e^{-3 x}=-e^{-3 x} \frac{(2 \cos 2 x+3 \sin 2 x)}{13}+c$

Question 4.
The solution of the differential equation,

$$
x^{2} \frac{d y}{d x} \cdot \cos \frac{1}{x}-y \sin \frac{1}{x}=-1 \text {, where } y \rightarrow-1 \text { as } x \rightarrow \infty \text {, is }
$$

(a) $y=\sin \frac{1}{x}-\cos \frac{1}{x}$
(b) $y=\frac{x+1}{x \sin \frac{1}{x}}$
(c) $y=\cos \frac{1}{x}+\sin \frac{1}{x}$
(d) $y=\frac{x+1}{x \cos \frac{1}{x}}$

Answer:
(a) $y=\sin \frac{1}{x}-\cos \frac{1}{x}$

Question 5.
The degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d y}{d x}\right) \text { is }
$$

(a) 1
(b) 2
(c) 3
(d) not defined

Answer:
(d) not defined

Question 6.
The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{4}}+x^{\frac{1}{5}}=0$ respectively are
(a) 2 and not defined
(b) 2 and 2
(c) 2 and 3
(d) 3 and 3

Answer:
(a) 2 and not defined

Question 7.
Integrating factor of the differential equation
$\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$ is
(a) $-x$
(b) $\frac{x}{1+x^{2}}$
(c) $\sqrt{1-x^{2}}$
(d) $\frac{1}{2} \log \left(1-x^{2}\right)$

Answer:
(c) $\sqrt{1-x^{2}}$

Question 8.
Integrating factor of the differential equation $\frac{d y}{d x}+\mathrm{y} \tan \mathrm{x}-\sec \mathrm{x}=0$ is
(a) $\cos x$
(b) $\sec x$
(c) $e^{\cos x}$
(d) $e^{\sec x}$

Answer:
(b) $\sec x$

Question 9.
If $(\mathrm{x}+\mathrm{y})^{2} \frac{d y}{d x}=\mathrm{a}^{2}, \mathrm{y}=0$ when $\mathrm{x}=0$, then $\mathrm{y}=\mathrm{a}$ if $\frac{x}{a}=$
(a) 1
(b) $\tan 1$
(c) $\tan 1+1$
(d) $\tan 1-1$

Answer:
(d) $\tan 1-1$

Question 10.
If $\frac{d y}{d x}=\sin (x+y)+\cos (x+y), y(0)=0, \quad$ then
$\tan \frac{x+y}{2}=$
(a) $e^{x}-1$
(b) $\frac{e^{x}-1}{2}$
(c) $2\left(e^{x}-1\right)$
(d) $1-e^{x}$

Answer:
(a) $\mathrm{e}^{\mathrm{x}}-1$

Question 11.
If $\sin \mathrm{x} \frac{d y}{d x}+\mathrm{y} \cos \mathrm{x}=\mathrm{x} \sin \mathrm{x}$, then $(\mathrm{y}-1) \sin \mathrm{x}=$
(a) $c-x \sin x$
(b) $c+x \cos x$
(c) $c-x \cos x$
(d) $c+x \sin x$

Answer:
(c) $\mathrm{c}-\mathrm{x} \cos \mathrm{x}$

Question 12.
The solution of differential equation $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$ is
(a) $\left(\mathrm{e}^{\mathrm{y}}+1\right) \sin \mathrm{x}=\mathrm{c}$
(b) $e^{x} \sin x=c$
(c) $\left(\mathrm{e}^{\mathrm{x}}+1\right) \cos \mathrm{x}=\mathrm{c}$
(d) none of these

Answer:
(a) $\left(\mathrm{e}^{\mathrm{y}}+1\right) \sin \mathrm{x}=\mathrm{c}$

Question 13.
The solution of the differential equation $\frac{d y}{d x}=\frac{x}{1+x^{2}}$ is
(a) $y=\frac{1}{2} \log \left|2+x^{2}\right|+c$
(b) $y=\frac{1}{2} \log (1+x)+c$
(c) $y=\log \left(\sqrt{1+x^{2}}\right)+c$
(d) none of these

Answer:
(c) $y=\log \left(\sqrt{1+x^{2}}\right)+c$

Question 14.
If $\frac{d y}{d x}=e^{-2 y}$ and $y=0$, when $x=5$, then the value of x when $y=3$ is
(a) e^{5}
(b) $e^{6}+1$
(c) $\frac{e^{6}+9}{2}$
(d) $\log _{e} 6$

Answer:
(c) $\frac{e^{6}+9}{2}$

Question 15.
If $\frac{d y}{d x}=y \sin 2 x, y(0)=1$ then solution is
(a) $y=e \sin ^{2} x$
(b) $y=\sin ^{2} x$
(c) $y=\cos ^{2} x$
(d) $y=e^{\cos ^{2} x}$

Answer:
(a) $y=e \sin ^{2} x$

Question 16.
The differential equation of all 'Simple Harmonic Motions' of given period $\frac{2 \pi}{n}$ is
(a) $\frac{d^{2} x}{d t^{2}}+n x=0$
(b) $\frac{d^{2} x}{d t^{2}}+n^{2} x=0$
(c) $\frac{d^{2} x}{d t^{2}}-n^{2} x=0$
(d) $\frac{d^{2} x}{d t^{2}}+\frac{1}{n^{2}} x=0$

Answer:
(b) $\frac{d^{2} x}{d t^{2}}+n^{2} x=0$

Question 17.
The differential equation of all parabolas whose axes are parallel to y -axis is
(a) $\frac{d y}{d x}=-\frac{c^{2}}{x^{2}}$
(b) $\frac{d^{2} x}{d y^{2}}=c$
(c) $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} x}{d y^{2}}=0$
(d) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=c$

Answer:
(a) $\frac{d y}{d x}=-\frac{c^{2}}{x^{2}}$

Question 18.
The Solution of $\cos (x+y) d y=d x$ is
(a) $y=\tan \left(\frac{x+y}{2}\right)+C$
(b) $y=\cos ^{-1}\left(\frac{y}{x}\right)+C$
(c) $y=x \sec \left(\frac{y}{x}\right)+C$
(d) none of these

Answer:
(a) $y=\tan \left(\frac{x+y}{2}\right)+C$

Question 19.
If $\frac{d y}{d x}=\frac{x+y}{x}, y(1)=1$, then $y=$
(a) $x+\ln x$
(b) $x^{2}+x \ln x$
(c) $x e^{x-1}$
(d) $x+x \ln x$

Answer:
(d) $x+x \ln x$

Question 20.
If $\left(x^{2}+y^{2}\right) d y=x y d x, y(1)=1$, and $y\left(x_{0}\right)=e$, then $x_{0}=$
(a) $\sqrt{2\left(e^{2}-1\right)}$
(b) $\sqrt{2\left(e^{2}+1\right)}$
(c) $\sqrt{3} . e$
(d) $\sqrt{\frac{e^{2}+1}{2}}$

Answer:
(c) $\sqrt{3} \mathrm{e}$

Question 21.
If $\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x}, y(1)=\frac{\pi}{2}$, then $y\left(\frac{1}{2}\right)=$
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{12}$

Answer:
(d) $\frac{\pi}{12}$

Question 22.
If $\frac{d y}{d x}=\frac{y}{x}\left(\frac{x \cos \frac{y}{x}+y \sin \frac{y}{x}}{y \sin \frac{y}{x}-x \cos \frac{y}{x}}\right)$, then
(a) $x \cos \frac{y}{x}=c y$
(b) $x \sec \frac{y}{x}=c y$
(c) $\cos \frac{y}{x}=c x y$
(d) $\sec \frac{y}{x}=c x y$

Answer:
(d) $\sec \frac{y}{x}=c x y$

Question 23.
If $\frac{d y}{d x}=\frac{y}{x-\sqrt{x y}}$, then
(a) $\sqrt{\frac{x}{y}}=\ln c y$
(b) $-\sqrt{\frac{x}{y}}=\ln c y$
(c) $-2 \sqrt{\frac{x}{y}}=\ln c y$
(d) $2 \sqrt{\frac{x}{y}}=\ln c y$

Answer:
(c) $-2 \sqrt{\frac{x}{y}}=\ln c y$

Question 24.
If $\left(1+e^{x / y}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0$, then
(a) $x-y e^{x / y}=c$
(b) $y-x e^{x / y}=c$
(c) $x+y e^{x / y}=c$
(d) $y+x e^{x / y}=c$

Answer:
(c) $x+y e^{x / y}=c$

Question 25.
The solution curve of $\frac{d y}{d x}=\frac{y^{2}-2 x y-x^{2}}{y^{2}+2 x y-x^{2}}, y(-1)=1$ is
(a) a straight line
(b) parabola
(c) circle
(d) ellipse

Answer:
(c) Circle

Question 26.
The differential equation of all circles which pass through the origin and whose centre lies on y axis is
(a) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0$
(b) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}+2 x y=0$
(c) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-x y=0$
(d) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}+x y=0$

Answer:
(a) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0$

Question 27.
The differential equation of the family of circles touching the x -axis at origin is given by
(a) $y^{\prime \prime}=\frac{1}{x^{2}-y^{2}} y^{\prime}$
(b) $y^{\prime}=\frac{2 x y}{x^{2}-y^{2}}$
(c) $y^{\prime \prime}-y^{\prime}=\frac{x y}{x^{2}-y^{2}}$
(d) none of these

Answer:
(b) $y^{\prime}=\frac{2 x y}{x^{2}-y^{2}}$

Question 28.
The differential equation representing the family of ellipses with centre at origin and foci on x axis is given as
(a) $x y^{\prime}+y=0$
(b) $x^{2} y^{2}\left(y^{\prime \prime}\right)^{2}+y y^{\prime}=0$
(c) $x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime}=0$
(d) None of these

Answer:
(b) $x^{2} y^{2}\left(y^{\prime \prime}\right)^{2}+y y^{\prime}=0$

Question 29.
The differential equation of all parabolas whose axes are along x -axis is
(a) $y_{2}^{2}+y_{1}=0$
(b) $y_{1}^{2}+y_{2}=0$
(c) $y_{1}^{2}+y_{1} y_{2}=0$
(d) $y_{1}^{2}+y y_{2}=0$

Answer:
(d) $y_{1}^{2}+y y_{2}=0$

Question 30.
The equation of family of curves for which the length of the normal is equal to the radius vector is
(a) $y^{2} \mp x^{2}=k^{2}$
(b) $y \pm x=k$
(c) $\mathrm{y}^{2}=\mathrm{kx}$
(d) none of these

Answer:
(a) $y^{2} \mp x^{2}=k^{2}$

Question 31.
Given the differential equation $\frac{d y}{d x}=\frac{6 x^{2}}{2 y+\cos y} ; y(1)=\pi$
Mark out the correct statement.
(a) solution is $y^{2}-\sin y=-2 x^{3}+C$
(b) solution is $y^{2}+\sin y=2 x^{3}+C$
(c) $\mathrm{C}=\pi^{2}+2 \sqrt{ } 2$
(d) $\mathrm{C}=\pi^{2}+2$

Answer:
(b) solution is $y^{2}+\sin y=2 x^{3}+C$

Question 32.
The differential equation of all parabolas whose axis of symmetry is along the axis of the x -axis is of order
(a) 3
(b) 1
(c) 2
(d) none of these

Answer:
(c) 2

Question 33.
The degree of the equation satisfying the relation
$\sqrt{1+x^{2}}+\sqrt{1+y^{2}}=\lambda\left(\sqrt{1+y^{2}}-y \sqrt{1+x^{2}}\right)$ is
(a) 1
(b) 2
(c) 3
(d) none of these

Answer:
(a) 1

Question 34.
The degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2 / 3}+4-\frac{3 d y}{d x}=0$ is
(a) 2
(b) 1
(c) 3
(d) none of these

Answer:
(a) 2

Question 35.
The differential equation whose solution is $(x-h)^{2}+(y-k)^{2}=a^{2}$ is (a is a constant)
(a) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=a^{2} \frac{d^{2} y}{d x^{2}}$
(b) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
(c) $\left[1+\left(\frac{d y}{d x}\right)\right]^{3}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
(d) none of these

Answer:
(b) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$

Question 36.
The differential equation satisfied by $\mathrm{y}=\frac{A}{x}+\mathrm{B}$ is (A, B are parameters)
(a) $x^{2} y_{1}=y$
(b) $\mathrm{xy}_{1}+2 \mathrm{y}_{2}=0$
(c) $\mathrm{xy}_{2}+2 \mathrm{y}_{1}=0$
(d) none of these

Answer:
(c) $\mathrm{xy}_{2}+2 \mathrm{y}_{1}=0$

Question 37.
The solution of a differential equation is $y=c_{1} e^{4 x}+c_{2} e^{3 x}$, the differential equation is given by
(a) $\frac{d^{2} y}{d x^{1}}-7 \frac{d y}{d x}+7=0$
(b) $\frac{d^{2} y}{d x^{2}}+7 \frac{d y}{d x} 12 y=0$
(c) $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=0$
(d) none of these

Answer:
(c) $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=0$

Question 38.
The differential equation satisfied by

$$
\begin{aligned}
& \sqrt{1+x^{2}}+\sqrt{1+y^{2}} \\
& =\lambda\left(x \sqrt{1+y^{2}}-y \sqrt{1+x^{2}}\right), \lambda \in R \text { is }
\end{aligned}
$$

(a) $\frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}}$
(b) $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$
(c) $\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$
(d) none of these

Answer:
(b) $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$

Question 39.
The solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$ is
(a) $y=\tan ^{-1} x$
(b) $y-x=k(1+x y)$
(c) $x=\tan ^{-1} y$
(d) $\tan (x y)=k$

Answer:
(b) $y-x=k(1+x y)$

Question 40.
The solution of the differential equation $\cos \mathrm{x} \sin \mathrm{ydx}+\sin \mathrm{x} \cos \mathrm{y} d \mathrm{dy}=0$ is
(a) $\frac{\sin x}{\sin y}=c$
(b) $\sin \mathrm{x} \sin \mathrm{y}=\mathrm{c}$
(c) $\sin x+\sin y=c$
(d) $\cos x \cos y=c$

Answer:
(b) $\sin \mathrm{x} \sin \mathrm{y}=\mathrm{c}$

Question 41.
Which of the following is the general solution of

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0 ?
$$

(a) $y=(A x+B) e^{x}$
(b) $y=(A x+B) e^{-x}$
(c) $y=A e^{x}+B e^{-x}$
(d) $y=A \cos x+B \sin x$

Answer:
(a) $y=(A x+B) e^{x}$

Question 42.
General solution of $\frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{1}{\left(1+x^{2}\right)^{2}}$ is
(a) $y\left(1+x^{2}\right)=c+\tan ^{-1} x$ (b) $\frac{y}{1+x^{2}}=c+\tan ^{-1} x$
(c) $y \log \left(1+x^{2}\right)=c+\tan ^{-1} x$
(d) $y\left(1+x^{2}\right)=c+\sin ^{-1} x$

Answer:
(a) $y\left(1+x^{2}\right)=c+\tan ^{-1} x$

Question 43.
If $\frac{x d y}{d x}-y=\sqrt{x^{2}+y^{2}}$, then
(a) $x+\sqrt{x^{2}+y^{2}}=c y^{2}$
(b) $\sqrt{x^{2}+y^{2}}-y=c x^{2}$
(c) $\sqrt{x^{2}+y^{2}}+y=c x^{2}$
(d) $\sqrt{x^{2}+y^{2}}-x=c y^{2}$

Answer:
(c) $\sqrt{x^{2}+y^{2}}+y=c x^{2}$

Question 44.
The solution of the differential equation $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$ is
(a) $\frac{y}{x^{2}+y^{2}}=c$
(b) $\frac{x^{2}+y^{2}}{x}=c$
(c) $\frac{y^{2}-x^{2}}{y}=c$
(d) $\frac{x^{2}-y^{2}}{x}=c$

Answer:
(d) $\frac{x^{2}-y^{2}}{x}=c$

Question 45.
The solution of the differential equation $x d y+(x+y) d x=0$ is
(a) $c=\frac{y^{2}}{2}+x y$
(b) $c=x y+\frac{x^{2}}{2}$
(c) $c=x+\frac{(x y)^{2}}{2}$
(d) none of these

Answer:
(b) $c=x y+\frac{x^{2}}{2}$

Question 46.
The solution of differential equation $\frac{d y}{d x}=\frac{x-y}{x+y}$ is
(a) $x^{2}-y^{2}+2 x y+c=0$
(b) $x^{2}-y^{2}-x y+c=0$
(c) $x^{2}-y^{2}+x y+c=0$
(d) $x^{2}-y^{2}-2 x y+c=0$

Answer:
(d) $x^{2}-y^{2}-2 x y+c=0$

Question 47.
The particular solution $\operatorname{In}\left(\frac{d y}{d x}\right)=3 \mathrm{x}+4 \mathrm{y}, \mathrm{y}(0)=0$ is
(a) $e^{3 x}+3 e^{-4 y}=4$
(b) $4 e^{3 x}-3 e^{-4 y}=3$
(c) $3 \mathrm{e}^{3 \mathrm{x}}+4 \mathrm{e}^{4 \mathrm{y}}=7$
(d) $4 e^{3 x}+3 e^{-4 y}=7$

Answer:
(d) $4 e^{3 x}+3 e^{-4 y}=7$

Question 48.
The solution of the differential equation

$$
\begin{aligned}
& \frac{x}{x^{2}+y^{2}} d y=\left(\frac{y}{x^{2}+y^{2}}-1\right) d x \text {, is } \\
& \begin{array}{ll}
\text { (a) } y=x \cot (C-x) & \text { (b) } \cos ^{-1} \frac{y}{x}=(-x+C) \\
\text { (c) } y=x \tan (C-x) & \text { (d) } \frac{y^{2}}{x^{2}}=x \tan (C-x)
\end{array}
\end{aligned}
$$

Answer:
(c) $y=x \tan (C-x)$

Question 49.
The solution of the differential equation
$\left(\frac{x+y-1}{x+y-2}\right) \frac{d y}{d x}=\left(\frac{x+y+1}{x+y+2}\right)$, when $x=1, y=1$, is
(a) $\log \left|\frac{(x-y)^{2}-2}{2}\right|=2(x+y)$
(b) $\log \left|\frac{(x-y)^{2}+2}{2}\right|=2(x-y)$
(c) $\log \left|\frac{(x+y)^{2}+2}{2}\right|=2(x-y)$
(d) none of these

Answer:
(d) None of these

Question 50.
The solution of the differential equation
$x d x+y d y+\frac{x d y-y d x}{x^{2}+y^{2}}=0$, is
(a) $y=x \tan \left(\frac{x^{2}+y^{2}+C}{2}\right)$
(b) $x=y \tan \left(\frac{x^{2}+y^{2}+C}{2}\right)$
(c) $y=x \tan \left(\frac{C-x^{2}-y^{2}}{2}\right)$
(d) none of these

Answer:
(c) $y=x \tan \left(\frac{C-x^{2}-y^{2}}{2}\right)$

Question 51.
If $\frac{d y}{d x}=\frac{2}{x+y}$, then $x+y+2=$
(a) $c e^{y}$
(b) $c e^{y / 2}$
(c) $c e^{-y}$
(d) $c e^{-\frac{y}{2}}$

Answer:
(b) $c e^{y / 2}$

Question 52.
The differential equation $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{y}}$ determines a family of circle with
(a) variable radii and fixed centre $(0,1)$
(b) variable radii and fixed centre $(0,-1)$
(c) fixed radius 1 and variable centre on x -axis
(d) fixed radius 1 and variable centre on y-axis

Answer:
(c) fixed radius 1 and variable centre on x -axis

Question 53.
If $y d x+y^{2} d y=x d y, x \in R, y>0$ and $y(1)=1$, then $y(-3)=$
(a) 3
(b) 2
(c) 1
(d) 5

Answer:
(a) 3

Question 54.
The solution of $y d x+\left(x+x^{2} y\right) d y=0$ is
(a) $-\frac{1}{x y}=c$
(b) $-\frac{1}{x y}+\ln y=c$
(c) $\frac{1}{x y}+\ln y=c$
(d) $\ln y=c x$

Answer:
(b) $-\frac{1}{x y}+\ln y=c$

Question 55.
If $\frac{x d y}{d x}+2 y=\ln x$, then $e^{2} y(e)-y(1)=$
(a) $\frac{e^{2}+1}{2}$
(b) $\frac{e^{2}+1}{3}$
(c) $\frac{e^{2}+1}{4}$
(d) $e^{2}+1$

Answer:
(c) $\frac{e^{2}+1}{4}$

Question 56.
If $x(x-1) \frac{d y}{d x}-y=x^{2}(x-1)^{2}$, then $4 y(2)-y(1)=$
(a) 0
(b) 2
(c) 4
(d) 6

Answer:
(d) 6

Question 57.
If $x \ln x \frac{d y}{d x}+y=2 \ln x, y(e)=2$, then $y\left(e^{2}\right)=$
(a) 1
(b) $\frac{3}{2}$
(c) 2
(d) $\frac{5}{2}$

Answer:
(d) $\frac{5}{2}$

Question 58.
If $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x, y(0)=1$, then $y\left(\frac{\pi}{4}\right)=$
(a) $\frac{1}{e}$
(b) e
(c) $2 e$
(d) $\frac{2}{e}$

Answer:
(d) $\frac{2}{e}$

