Application of Integrals

Question 1.
The area bounded by the curves $y=-\sqrt{4-x^{2}}, x^{2}=-\sqrt{ } 2 \mathrm{y}$ and $\mathrm{x}=\mathrm{y}$ is
(a) $\left(\pi+\frac{1}{3}\right)$ sq. units
(b) $\left(\pi-\frac{1}{3}\right)$ sq. units
(c) $\left(\pi+\frac{2}{3}\right)$ sq. units
(d) $\left(\pi-\frac{2}{3}\right)$ sq. units

Answer:
(a) $\left(\pi+\frac{1}{3}\right)$ sq. units

Question 2.
The area common to the ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,0<\mathrm{b}<\mathrm{a}$ is
(a) $(a+b)^{2} \tan ^{-1} \frac{b}{a}$
(b) $(a+b)^{2} \tan ^{-1} \frac{a}{b}$
(c) $4 a b \tan ^{-1} \frac{b}{a}$
(d) $4 a b \tan ^{-1} \frac{a}{b}$

Answer:
(c) $4 a b \tan ^{-1} \frac{b}{a}$

Question 3.
The area enclosed by the parabola $\mathrm{y}^{2}=2 \mathrm{x}$ and tangents through the point $(-2,0)$ is
(a) 3 sq. units
(b) 4 sq. units
(c) $\frac{4}{3}$ sq. units
(d) $\frac{8}{3}$ sq. units

Answer:
(d) $\frac{8}{3}$ sq. units

Question 4.
The area bounded by the lines $y=4 x+5, y=5-x$ and $4 y=x+5$ is
(a) $\frac{15}{2}$ sq. units
(b) $\frac{9}{2}$ sq. units
(c) $\frac{13}{2}$ sq. units
(d) None of these

Answer:
(a) $\frac{15}{2}$ sq. units

Question 5.
The area bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is
(a) 1 sq. units
(b) $\frac{1}{3}$ sq. units
(c) $\frac{2}{3}$ sq. units
(d) $\frac{4}{3}$ sq. units

Answer:
(d) $\frac{4}{3}$ sq. units

Question 6.
The area bounded by $y=(2 x)^{1 / 2}$ and $x=(2 y)^{1 / 2}$ is
(a) $\frac{4}{3}$ sq. units
(b) $\frac{13}{2}$ sq. units
(c) $\frac{12}{5}$ sq. units
(d) $\frac{4}{25}$ sq. units

Answer:
(a) $\frac{4}{3}$ sq. units

Question 7.
The area of the region $\left\{(x, y): y^{2}=x, x^{2}+y^{2}=2\right\}$ is
(a) $\left(\frac{\pi}{4}-\frac{1}{3}\right)$ sq. units
(b) $\left(\frac{\pi}{4}+\frac{1}{3}\right)$ sq. units
(c) $\left(\frac{\pi}{4}-\frac{1}{6}\right)$ sq. units
(d) $\left(\frac{\pi}{2}+\frac{1}{3}\right)$ sq. units

Answer:
(d) $\left(\frac{\pi}{2}+\frac{1}{3}\right)$ sq. units

Question 8.
The area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$ is
(a) $\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$ sq. units
(b) $\frac{\sqrt{2}}{6}-\frac{1}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$ sq. units
(c) $\frac{3}{2}$ sq. units
(d) $\frac{7}{2}$ sq. units

Answer:
(a) $\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$ sq. units

Question 9.
The area bounded by the curve $x^{2}=4 y=4 y+4$ and line $3 x+4 y=0$ is
(a) $\frac{25}{4}$ sq. units
(b) $\frac{125}{8}$ sq. units
(c) $\frac{125}{16}$ sq. units
(d) $\frac{125}{24}$ sq. units

Answer:
(d) $\frac{125}{24}$ sq. units

Question 10.
The area enclosed between the graph of $y=x^{3}$ and the lines $x=0, y=1, y=8$ is
(a) $\frac{45}{4}$
(b) 14
(c) 7
(d) none of these

Answer:
(a) $\frac{45}{4}$

Question 11.
The area enclosed by the curve $y=\sqrt{ } x$ and $x=-\sqrt{ } y$, the circle $x^{2}+y^{2}=2$ above the x-axis is
(a) $\frac{\pi}{4}$ sq. units
(b) $\frac{3 \pi}{2}$ sq. units
(c) π sq. units
(d) $\frac{\pi}{2}$ sq. units

Answer:
(d) $\frac{\pi}{2}$ sq. units

Question 12.
The ratio in which the x-axis divides the area of the region bounded by the curves $y=x^{2}-4 x$ and $y=2 x-x^{2}$
(a) $4: 23$
(b) $4: 27$
(c) $4: 19$
(d) none of these

Answer:
(a) $4: 23$

Question 13.
Area bounded by the lines $y=|x|$ and $y=1-|x-1|$ is equal to
(a) 4 sq. units
(b) 6 sq. units
(c) 2 sq. units
(d) 8 sq. units

Answer:
(a) 4 sq. units

Question 14.
The area bounded by the lines $y=|x-1|$ and $y=3-|x|$ is
(a) 2 sq. units
(b) 3 sq. units
(c) 4 sq. units
(d) 6 sq. units

Answer:
(c) 4 sq. units

Question 15.
The area bounded by the line $y=2 x-2, y=-x$ and x-axis is given by
(a) $\frac{9}{2}$ sq. units
(b) $\frac{43}{6}$ sq. units
(c) $\frac{35}{6}$ sq. units
(d) None of these

Answer:
(d) None of these

Question 16.
The area of smaller portion bounded by $|y|=-x+1$ and $y^{2}=4 x$ is
(a) 1 sq. units
(b) 2 sq. units
(c) 3 sq. units
(d) none of these

Answer:
(d) none of these

Question 17.
The area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and inside of parabola $\mathrm{y}^{2}=4 \mathrm{x}$ is
(a) $\frac{1}{3}(2+3 \pi)$ sq. units
(b) $\frac{2}{3}(4+3 \pi)$ sq. units
(c) $(6+3 \pi)$ sq. units
(d) $\frac{4}{3}(8+3 \pi)$ sq. units

Answer:
(d) $\frac{4}{3}(8+3 \pi)$ sq. units

Question 18.
Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.
(a) 27 sq. units
(b) 28 sq. units
(c) 54 sq. units
(d) 30 sq. units

Answer:
(a) 27 sq. units

Question 19.
The area included between the curves $x^{2}=4 b y$ and $y^{2}=4 a x$
(a) 16ab sq. units
(b) $\frac{16 a b}{3}$ sq. units
(c) 4 ab sq. units
(d) 16π ab sq. units

Answer:
(b) $\frac{16 a b}{3}$ sq. units

Question 20.
Area of the region between the curves $\mathrm{x}^{2}+\mathrm{y}^{2}=\pi^{2}, \mathrm{y}=\sin \mathrm{x}$ and y -axis in first quadrant is
(a) $\left(\frac{\pi^{3}-8}{4}\right)$ sq. units
(b) $\left(\frac{\pi^{3}-4}{8}\right)$ sq. units
(c) $\left(\frac{\pi^{2}-8}{4}\right)$ sq. units
(d) $\left(\frac{\pi^{2}-4}{8}\right)$ sq. units

Answer:
(a) $\left(\frac{\pi^{3}-8}{4}\right)$ sq. units

Question 21.
If $y=2 \sin x+\sin 2 x$ for $0 \leq x \leq 2 \pi$, then the area enclosed by the curve and x-axis is
(a) $\frac{9}{2}$ sq. units
(b) 8 sq. units
(c) 12 sq. units
(d) 4 sq. units

Answer:
(c) 12 sq. units

Question 22.
The area bounded by the curve $y=x^{2}+4 x+5$, the axes of coordinates and minimum ordinate is
(a) $3 \frac{2}{3}$ sq. units
(b) $4 \frac{2}{3}$ sq. units
(c) $5 \frac{2}{3}$ sq. units
(d) None of these

Answer:
(b) $4 \frac{2}{3}$ sq. units

Question 23.
The area of the ellipse $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{9^{2}}=1$ is
(a) 6π sq. units
(b) $\frac{\pi\left(a^{2}+b^{2}\right)}{4}$ sq. units
(c) $p(a+b)$ sq. units
(d) none of these

Answer:
(d) none of these

Question 24.
The area bounded by the curve $2 \mathrm{x}^{2}+\mathrm{y}^{2}=2$ is
(a) π sq. units
(b) $\sqrt{ } 2 \pi$ sq. units
(c) $\frac{\pi}{2}$ sq. units
(d) 2π sq. units

Answer:
(b) $\sqrt{ } 2 \pi$ sq. units

Question 25.
Area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(a) $4 \pi a b$ sq.units
(b) $2 \pi a b$ sq.units
(c) π ab sq.units
(d) $\frac{\pi a b}{2}$ sq.units

Answer:
(c) π ab sq.units

Question 26.
Determine the area under the curve $y=\sqrt{a^{2}-x^{2}}$ included between the lines $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$.
(a) $\frac{\pi a^{a}}{4}$
(b) $\frac{\pi a^{3}}{4}$
(c) $\frac{\pi a^{2}}{8}$
(d) None of these

Answer:
(a) $\frac{\pi a^{a}}{4}$

Question 27.
The area enclosed by curve $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
(a) 10π sq. units
(b) 20π sq. units
(c) 5π sq. units
(d) 4π sq. units

Answer:
(b) 20π sq. units

Question 28.
The area bounded by the curve $y=x^{2}-1$ and the straight line $x+y=3$ is
(a) $\frac{9}{2}$ sq. units
(b) 4 sq. units
(c) $\frac{7 \sqrt{ } 17}{2}$ sq. units
(d) $\frac{17 \sqrt{17}}{6}$ sq. units

Answer:
(d) $\frac{17 \sqrt{17}}{6}$ sq. units

Question 29.
The area of the region $R=\left((x, y):|x| \leq|y|\right.$ and $\left.x^{2}+y^{2} \leq 1\right)$ is
(a) $\frac{3 \pi}{8}$ sq. units
(b) $\frac{5 \pi}{8}$ sq. units
(c) $\frac{\pi}{2}$ sq. units
(d) $\frac{\pi}{8}$ sq. units

Answer:
(c) $\frac{\pi}{2}$ sq. units

Question 30.
The area enclosed between the curve $y^{2}=4 x$ and the line $y=x$ is
(a) $\frac{8}{3}$ sq. units
(b) $\frac{4}{3}$ sq. units
(c) $\frac{2}{3}$ sq. units
(d) $\frac{1}{2}$ sq. units

Answer:
(a) $\frac{8}{3}$ sq. units

Question 31.
The area bounded by the curves $x^{2}+y^{2}=9$ and $y^{2}=8 x$ is
(a) 0 sq. units
(b) $\left(\frac{2 \sqrt{2}}{3}+\frac{9 \pi}{2}-9 \sin ^{-1} \frac{1}{3}\right)$ sq. units
(c) 16π sq. units
(d) None of these

Answer:
(b) $\left(\frac{2 \sqrt{2}}{3}+\frac{9 \pi}{2}-9 \sin ^{-1} \frac{1}{3}\right)$ sq. units

Question 32.
The area bounded by the curves $y=\sin x, y=\cos x$ and $x=0$ is
(a) $(\sqrt{ } 2-1)$ sq. units
(b) 1 sq. units
(c) $\sqrt{ } 2$ sq. units
(d) $(1+\sqrt{2})$ sq. units

Answer:
(a) $(\sqrt{ } 2-1)$ sq. units

Question 33.
The area common to the circle $x^{2}+y^{2}=16 a^{2}$ and the parabola $y^{2}=6 a x$ is
(a) $\frac{4 a^{2}}{3}(4 \pi-\sqrt{3})$ sq. units
(b) $\frac{4 a^{2}}{3}(8 \pi-3)$ sq. units sq. units
(c) $\frac{4 a^{2}}{3}(4 \pi+\sqrt{3})$ sq. units
(d) None of these

Answer:
(c) $\frac{4 a^{2}}{3}(4 \pi+\sqrt{3})$ sq. units

Question 34.
The area included between curves $y=x^{2}-3 x+2$ and $y=-x^{2}+3 x-2$ is
(a) $\frac{1}{6}$ sq. units
(b) $\frac{1}{2}$ sq. units
(c) 1 sq. units
(d) $\frac{1}{3}$ sq. units

Answer:
(d) $\frac{1}{3}$ sq. units

Question 35.
The area bounded by $x=-4 y^{2}$ and $x-1=-5 y^{2}$ is
(a) 1 sq. unit
(b) $\frac{2}{3}$ sq. units
(c) $\frac{2}{3}$ sq. units
(d) 2 sq. units

Answer:
(c) $\frac{2}{3}$ sq. units

Question 36.
The area bounded by the lines $y=|x-2|, x=1, x=3$ and the x-axis is
(a) 1 sq. units
(b) 2 sq. units
(c) 3 sq. units
(d) 4 sq. units

Answer:
(b) 2 sq. units

Question 37.
Area of the region bounded by the curve $y=x^{2}$ and the line $y=4$ is
(a) $\frac{11}{3}$ sq. units
(b) $\frac{32}{3}$ sq. units
(c) $\frac{43}{3}$ sq. units
(d) $\frac{47}{3}$ sq. units

Answer:
(b) $\frac{32}{3}$ sq. units

Question 38.

Area of the smaller region bounded by $x^{2}+y^{2}=9$ and the line $x=1$ is
(a) $\left(2-3 \mathrm{sec}^{-1} 3\right)$ sq. units
(b) $\left(\sqrt{ } 8-3 \mathrm{sec}^{-1} 3\right)$ sq.units
(c) $\left(9 \mathrm{sec}^{-1} 3-\sqrt{ } 8\right)$ sq. units
(d) $\left(\sec ^{-1} 3-3 \sqrt{ } 8\right)$ sq.units

Answer:
(c) $\left(9 \sec ^{-1} 3-\sqrt{ } 8\right)$ sq. units

Question 39.
The area bounded by the curve $y^{2}=x$, line $y=4$ and y-axis is
(a) $\frac{16}{3}$ sq. units
(b) $\frac{64}{3}$ sq. units
(c) $7 \sqrt{ } 2$ sq. units
(d) none of these

Answer:
(b) $\frac{64}{3}$ sq. units

Question 40.
The area bounded by the curve $x=3 y^{2}-9$ and the line $x=0, y=0$ and $y=1$ is
(a) 8 sq. units
(b) $\frac{8}{3}$ sq. units
(c) $\frac{3}{8}$ sq. units
(d) 3 sq. units

Answer:
(a) 8 sq. units

Question 41.
Area bounded by the curve $y^{2}=16 x$ and line $y=m x$ is $\frac{2}{3}$ then m is equal to
(a) 3
(b) 4
(c) 1
(d) 2

Answer:
(b) 4

Question 42.
Find the area enclosed by parabola $y^{2}=x$ and the line $y+x=2$ and the x-axis.
(a) $\frac{5}{6}$ sq. units
(b) $\frac{7}{6}$ sq. units
(c) $\frac{6}{7}$ sq. units
(d) $\frac{4}{7}$ sq. units

Answer:
(b) $\frac{7}{6}$ sq. units

Question 43.
The area bounded by the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ and 1 st quadrant is
(a) $\frac{\pi}{4}$ sq.units
(b) $\frac{\pi}{2}$ sq. units
(c) $\frac{\pi}{3}$ sq.units
(d) $\frac{\pi}{6}$ sq.units

Answer:
(a) $\frac{\pi}{4}$ sq.units

Question 44.
Area bounded by the curve $y=\cos x$ between $x=0$ and $x=\frac{3 \pi}{2}$ is
(a) 1 sq. units
(b) 2 sq. units
(c) 3 sq. units
(d) 4 sq. units

Answer:
(c) 3 sq. units

Question 45.
The area of the region bounded by the curve $y=\sqrt{4-x^{2}}$ and x -axis is
(a) 8π sq. units
(b) 2π sq. units
(c) 16π sq. units
(d) 6π sq. units

Answer:
(b) 2π sq. units

