Application of Derivatives

Question 1.
Find all the points of local maxima and local minima of the function $f(x)=(x-1)^{3}(x+1)^{2}$
(a) $1,-1,-1 / 5$
(b) $1,-1$
(c) $1,-1 / 5$
(d) $-1,-1 / 5$

Answer:
(a) $1,-1,-1 / 5$

Question 2.
Find the local minimum value of the function $f(x)=\sin ^{4} x+\cos ^{4} x, 0<x<\frac{\pi}{2}$
(a) $\frac{1}{\sqrt{ } 2}$
(b) $\frac{1}{2}$
(c) $\frac{\sqrt{ } 3}{2}$
(d) 0

Answer:
(b) $\frac{1}{2}$

Question 3.
Find the points of local maxima and local minima respectively for the function $f(x)=\sin 2 x-x$, where
$-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
(a) $\frac{-\pi}{6}, \frac{\pi}{6}$
(b) $\frac{\pi}{3}, \frac{-\pi}{3}$
(c) $\frac{-\pi}{3}, \frac{\pi}{3}$
(d) $\frac{\pi}{6}, \frac{-\pi}{6}$

Answer:
(d) $\frac{\pi}{6}, \frac{-\pi}{6}$

Question 4.
If $y=\frac{a x-b}{(x-1)(x-4)}$ has a turning point $\mathrm{P}(2,-1)$, then find the value of a and b respectively.
(a) 1,2
(b) 2,1
(c) 0,1
(d) 1,0

Answer:
(d) 1,0

Question 5.
$\sin ^{\mathrm{p}} \theta \cos ^{\mathrm{q}} \theta$ attains a maximum, when $\theta=$
(a) $\tan ^{-1} \sqrt{\frac{p}{q}}$
(b) $\tan ^{-1}\left(\frac{p}{q}\right)$
(c) $\tan ^{-1} q$
(d) $\tan ^{-1}\left(\frac{q}{p}\right)$

Answer:
(a) $\tan ^{-1} \sqrt{\frac{p}{q}}$

Question 6.
Find the maximum profit that a company can make, if the profit function is given by $\mathrm{P}(\mathrm{x})=41+$ $24 \mathrm{x}-18 \mathrm{x}^{2}$.
(a) 25
(b) 43
(c) 62
(d) 49

Answer:
(d) 49

Question 7.
If $y=x^{3}+x^{2}+x+1$, then y
(a) has a local minimum
(b) has a local maximum
(c) neither has a local minimum nor local maximum
(d) None of these

Answer:
(c) neither has a local minimum nor local maximum

Question 8.
Find both the maximum and minimum values respectively of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+1$ on the
interval $[1,4]$.
(a) $-63,257$
(b) $257,-40$
(c) $257,-63$
(d) $63,-257$

Answer:
(c) 257, -63

Question 9.
It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value on the interval $[0,2]$. Find the value of a.
(a) 100
(b) 120
(c) 140
(d) 160

Answer:
(b) 120

Question 10.
The function $f(x)=x^{5}-5 x^{4}+5 x^{3}-1$ has
(a) one minima and two maxima
(b) two minima and one maxima
(c) two minima and two maxima
(d) one minima and one maxima

Answer:
(d) one minima and one maxima

Question 11.
Find the height of the cylinder of maximum volume that can be is cribed in a sphere of radius a.
(a) $\frac{2 a}{3}$
(b) $\frac{2 a}{\sqrt{3}}$
(c) $\frac{a}{3}$
(d) $\frac{a}{3}$

Answer:
(b) $\frac{2 a}{\sqrt{3}}$

Question 12.
Find the volume of the largest cylinder that can be inscribed in a sphere of radius rcm .
(a) $\frac{\pi r^{3}}{3 \sqrt{3}}$
(b) $\frac{4 \pi r^{2} h}{3 \sqrt{ } 3}$
(c) $4 \pi r^{3}$
(d) $\frac{4 \pi r^{3}}{3 \sqrt{3}}$

Answer:
(d) $\frac{4 \pi r^{3}}{3 \sqrt{3}}$

Question 13.
The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is
(a) scalene
(b) equilateral
(c) isosceles
(d) None of these

Answer:
(c) isosceles

Question 14.
Find the area of the largest isosceles triangle having perimeter 18 metres.
(a) $9 \sqrt{ } 3$
(b) $8 \sqrt{ } 3$
(c) $4 \sqrt{ } 3$
(d) $7 \sqrt{ } 3$

Answer:
(a) $9 \sqrt{ } 3$

Question 15.
$2 x^{3}-6 x+5$ is an increasing function, if
(a) $0<x<1$
(b) $-1<x<1$
(c) $\mathrm{x}<-1$ or $\mathrm{x}>1$
(d) $-1<x<-\frac{1}{2}$

Answer:
(c) $\mathrm{x}<-1$ or $\mathrm{x}>1$

Question 16.
If $f(x)=\sin x-\cos x$, then interval in which function is decreasing in $0 \leq x \leq 2 \pi$, is
(a) $\left[\frac{5 \pi}{6}, \frac{3 \pi}{4}\right]$
(b) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
(c) $\left[\frac{3 \pi}{2}, \frac{5 \pi}{2}\right]$
(d) None of these

Answer:
(d) None of these

Question 17.
The function which is neither decreasing nor increasing in $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ is
(a) $\operatorname{cosec} x$
(b) $\tan x$
(c) x^{2}
(d) $|x-1|$

Answer:
(a) $\operatorname{cosec} x$

Question 18.
The function $f(x)=\tan ^{-1}(\sin x+\cos x)$ is an increasing function in
(a) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
(b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(c) $\left(0, \frac{\pi}{2}\right)$
(d) None of these

Answer:
(d) None of these

Question 19.
The function $f(x)=x^{3}+6 x^{2}+(9+2 k) x+1$ is strictly increasing for all x, if
(a) $k>\frac{3}{2}$
(b) $k<\frac{3}{2}$
(c) $k \geq \frac{3}{2}$
(d) $k \leq \frac{3}{2}$

Answer:
(a) $k>\frac{3}{2}$

Question 20.
The point on the curves $y=(x-3)^{2}$ where the tangent is parallel to the chord joining $(3,0)$ and $(4$, $1)$ is
(a) $\left(-\frac{7}{2}, \frac{1}{4}\right)$
(b) $\left(\frac{5}{2}, \frac{1}{4}\right)$
(c) $\left(-\frac{5}{2}, \frac{1}{4}\right)$
(d) $\left(\frac{7}{2}, \frac{1}{4}\right)$

Answer:
(d) $\left(\frac{7}{2}, \frac{1}{4}\right)$

Question 21.
The slope of the tangent to the curve $\mathrm{x}=\mathrm{a} \sin \mathrm{t}, \mathrm{y}=\mathrm{a}\left\{\cot \mathrm{t}+\log \left(\tan \frac{t}{2}\right)\right\}$ at the point ' t ' is
(a) $\tan t$
(b) $\cot t$
(c) $\tan \frac{t}{2}$
(d) None of these

Answer:
(a) $\tan t$

Question 22.
The equation of the normal to the curves $y=\sin x$ at $(0,0)$ is
(a) $x=0$
(b) $x+y=0$
(c) $y=0$
(d) $x-y=0$

Answer:
(b) $x+y=0$

Question 23.
The tangent to the parabola $x^{2}=2 y$ at the point $\left(1, \frac{1}{2}\right)$ makes with the x-axis an angle of
(a) 0°
(b) 45°
(c) 30°
(d) 60°

Answer:
(b) 45°

Question 24.
The two curves $x^{3}-3 x y^{2}+5=0$ and $3 x^{2} y-y^{3}-7=0$
(a) cut at right angles
(b) touch each other
(c) cut at an angle $\frac{\pi}{4}$
(d) cut at an angle $\frac{\pi}{3}$

Answer:
(a) cut at right angles

Question 25.
The distance between the point $(1,1)$ and the tangent to the curve $y=e^{2 x}+x^{2}$ drawn at the point $\mathrm{x}=0$
(a) $\frac{1}{\sqrt{5}}$
(b) $\frac{-1}{\sqrt{5}}$
(c) $\frac{2}{\sqrt{5}}$
(d) $\frac{-2}{\sqrt{5}}$

Answer:
(c) $\frac{2}{\sqrt{5}}$

Question 26.
The tangent to the curve $y=2 x^{2}-x+1$ is parallel to the line $y=3 x+9$ at the point
(a) $(2,3)$
(b) $(2,-1)$
(c) $(2,1)$
(d) $(1,2)$

Answer:
(d) $(1,2)$

Question 27.
The tangent to the curve $y=x^{2}+3 x$ will pass through the point $(0,-9)$ if it is drawn at the point
(a) $(0,1)$
(b) $(-3,0)$
(c) $(-4,4)$
(d) $(1,4)$

Answer:
(b) $(-3,0)$

Question 28.
Find a point on the curve $\mathrm{y}=(\mathrm{x}-2)^{2}$. at which the tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$.
(a) $(3,1)$
(b) $(4,1)$
(c) $(6,1)$
(d) $(5,1)$

Answer:
(a) $(3,1)$

Question 29.
Tangents to the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=2$ at the points $(1,1)$ and $(-1,1)$ are
(a) parallel
(b) perpendicular
(c) intersecting but not at right angles
(d) none of these

Answer:
(b) perpendicular

Question 30.
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
(a) 1%
(b) 2%
(c) 3%
(d) 4%

Answer:
(a) 1%

Question 31.
If there is an error of $\mathrm{a} \%$ in measuring the edge of a cube, then percentage error in its surface area is
(a) $2 \mathrm{a} \%$
(b) $\frac{a}{2} \%$
(c) $3 a \%$
(d) None of these

Answer:
(b) $\frac{a}{2} \%$

Question 32.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm , then find the approximating error in calculating its volume.
(a) $2.46 \pi \mathrm{~cm}^{3}$
(b) $8.62 \pi \mathrm{~cm}^{3}$
(c) $9.72 \pi \mathrm{~cm}^{3}$
(d) $7.46 \pi \mathrm{~cm}^{3}$

Answer:
(c) $9.72 \pi \mathrm{~cm}^{3}$

Question 33.
Find the approximate value of $f(3.02)$, where $f(x)=3 x^{2}+5 x+3$
(a) 45.46
(b) 45.76
(c) 44.76
(d) 44.46

Answer:
(a) 45.46

Question 34.
$f(x)=3 x^{2}+6 x+8, x \in R$
(a) 2
(b) 5
(c) -8
(d) does not exist

Answer:
(d) does not exist

Question 35.
The radius of a cylinder is increasing at the rate of $3 \mathrm{~m} / \mathrm{s}$ and its height is decreasing at the rate of $4 \mathrm{~m} / \mathrm{s}$. The rate of change of volume when the radius is 4 m and height is 6 m , is
(a) $80 \pi \mathrm{cu} \mathrm{m} / \mathrm{s}$
(b) $144 \pi \mathrm{cu} \mathrm{m} / \mathrm{s}$
(c) $80 \mathrm{cu} \mathrm{m} / \mathrm{s}$
(d) $64 \mathrm{cu} \mathrm{m} / \mathrm{s}$

Answer:
(a) $80 \pi \mathrm{cu} \mathrm{m} / \mathrm{s}$

Question 36.
The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{s}$. The rate at which the area increases, when the side is 10 cm , is
(a) $\sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
(b) $10 \mathrm{~cm}^{2} / \mathrm{s}$
(c) $10 \sqrt{3 \mathrm{~cm}^{2}} / \mathrm{s}$
(d) $\frac{10}{\sqrt{3}} \mathrm{~cm}^{2} / \mathrm{s}$

Answer:
(c) $10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$

Question 37.
A particle is moving along the curve $\mathrm{x}=\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}$. If $\mathrm{ac}=\mathrm{b}^{2}$, then particle would be moving with uniform
(a) rotation
(b) velocity
(c) acceleration
(d) retardation

Answer:
(c) acceleration

Question 38.
The distance ' s ' metres covered by a body in t seconds, is given by $s=3 t^{2}-8 t+5$. The body will stop after
(a) 1 s
(b) $\frac{3}{4} \mathrm{~s}$
(c) $\frac{4}{3} \mathrm{~s}$
(d) 4 s

Answer:
(c) $\frac{4}{3} \mathrm{~s}$

Question 39.
The position of a point in time ' t ' is given by $x=a+b t-c t^{2}, y=a t+b t^{2}$. Its acceleration at time ' t ' is
(a) $b-c$
(b) $b+c$
(c) $2 b-2 \mathrm{c}$
(d) $2 \sqrt{b^{2}+c^{2}}$

Answer:
(d) $2 \sqrt{b^{2}+c^{2}}$

Question 40.
The function $f(x)=\log (1+x)-\frac{2 x}{2+x}$ is increasing on
(a) $(-1, \infty)$
(b) $(-\infty, 0)$
(c) $(-\infty, \infty)$
(d) None of these

Answer:
(a) $(-1, \infty)$

Question 41.
$f(x)=\left(\frac{e^{2 x}-1}{e^{2 x}+1}\right)$ is
(a) an increasing function
(b) a decreasing function
(c) an even function
(d) None of these

Answer:
(a) an increasing function

Question 42.
The function $f(x)=\cot ^{-1} x+x$ increases in the interval
(a) $(1, \infty)$
(b) $(-1, \infty)$
(c) $(0, \infty)$
(d) $(-\infty, \infty)$

Answer:
(d) $(-\infty, \infty)$

Question 43.
The function $\mathrm{f}(\mathrm{x})=\frac{x}{\log x}$ increases on the interval
(a) $(0, \infty)$
(b) $(0$, e)
(c) (e, ∞)
(d) none of these

Answer:
(c) (e, ∞)

Question 44.
The length of the longest interval, in which the function $3 \sin x-4 \sin ^{3} \mathrm{x}$ is increasing, is
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{2}$
(d) π

Answer:
(a) $\frac{\pi}{3}$

Question 45.
The coordinates of the point on the parabola $y^{2}=8 x$ which is at minimum distance from the circle $x^{2}+(y+6)^{2}=1$ are
(a) $(2,-4)$
(b) $(18,-12)$
(c) $(2,4)$
(d) none of these

Answer:
(a) $(2,-4)$

Question 46.
The distance of that point on $y=x^{4}+3 x^{2}+2 x$ which is nearest to the line $y=2 x-1$ is
(a) $\frac{3}{\sqrt{5}}$
(b) $\frac{4}{\sqrt{ } 5}$
(c) $\frac{2}{\sqrt{5}}$
(d) $\frac{1}{\sqrt{ } 5}$

Answer:
(d) $\frac{1}{\sqrt{5}}$

Question 47.
The function $\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{4}{x}$ has
(a) a local maxima at $\mathrm{x}=2$ and local minima at $\mathrm{x}=-2$
(b) local minima at $\mathrm{x}=2$, and local maxima at $\mathrm{x}=-2$
(c) absolute maxima at $\mathrm{x}=2$ and absolute minima at $\mathrm{x}=-2$
(d) absolute minima at $\mathrm{x}=2$ and absolute maxima at $\mathrm{x}=-2$

Answer:
(b) local minima at $\mathrm{x}=2$, and local maxima at $\mathrm{x}=-2$

Question 48.
The combined resistance R of two resistors R_{1} and $\mathrm{R}_{2}\left(\mathrm{R}_{1}, \mathrm{R}_{2}>0\right)$ is given by $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$. If
$R_{1}+R_{2}=C$ (a constant), then maximum resistance R is obtained if
(a) $\mathrm{R}_{1}>\mathrm{R}_{2}$
(b) $\mathrm{R}_{1}<\mathrm{R}_{2}$
(c) $\mathrm{R}_{1}=\mathrm{R}_{2}$
(d) None of these

Answer:
(c) $\mathrm{R}_{1}=\mathrm{R}_{2}$

Question 49.
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume and of radius r.
(a) r
(b) 2 r
(c) $\frac{r}{2}$
(d) $\frac{3 \pi r}{2}$

Answer:
(a) r

