Continuity and Differentiability

Question 1. The derivative of f(tan x) w.r.t. g(sec x) at $x = \frac{\pi}{4}$, where f'(1) = 2 and g'($\sqrt{2}$) = 4, is (a) $\frac{1}{\sqrt{2}}$ (b) $\sqrt{2}$ (c) 1

(d) 0Answer:

(a) $\frac{1}{\sqrt{2}}$

Question 2.

(c) $\frac{2}{3}$

Question 3. The derivative of

Answer:

(b) 1

Question 4.

img src="https://live.staticflickr.com/65535/50354653758_a00e3fc2ee_o.png" width="374" height="162" alt="Maths MCQs for Class 12 with Answers Chapter 5 Continuity and Differentiability Q34">

Answer: $(a)^{5}$

(c) $\frac{5}{16t^6}$

Question 5.

If
$$y = (x + \sqrt{1 + x^2})^n$$
, then $(1 + x^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx}$ is
(a) $n^2 y$ (b) $-n^2 y$
(c) $-y$ (d) $2x^2 y$

Answer:

(a) n²y

Question 6.

If
$$x = a \sin \theta$$
 and $y = b \cos \theta$, then $\frac{d^2 y}{dx^2}$ is equal to
(a) $\frac{a}{b^2} \sec^2 \theta$ (b) $\frac{b}{a} \sec^2 \theta$
(c) $\frac{b}{a^2} \sec^3 \theta$ (d) $-\frac{b}{a^2} \sec^3 \theta$

Answer:
(d)
$$-\frac{b}{a^2} \sec^3 \theta$$

Question 7.

If
$$y = a^x$$
, b^{2x-1} , then $\frac{d^2 y}{dx^2}$ is
(a) $y^2 \cdot \log ab^2$ (b) $y \cdot \log ab^2$
(c) $y \cdot (\log ab^2)^2$ (d) $y \cdot (\log a^2 b)^2$

Answer:

(c) y. $(\log ab^2)^2$

Question 8.

If $y = \frac{\ln x}{x}$, then the value of y''(e) is (b) $-\frac{1}{e}$ (a) 1 (c) $-\frac{1}{e^2}$ (d) $-\frac{1}{e^3}$

Answer: (d) $-\frac{1}{e^2}$

Question 9.

If
$$x = a(\cos\theta + \theta\sin\theta)$$
, y
 $= a(\sin\theta - \theta\cos\theta)$, then $\frac{d^2y}{dx^2} =$
(a) $\frac{\sec^3\theta}{a\theta}$ (b) $\frac{\sec^2\theta}{\theta}$
(c) $a\theta\cos^3\theta$ (d) $\frac{\sec^2\theta}{a\theta}$

Answer: (a) $\frac{\sec^3\theta}{a\theta}$

Question 10. If $y^2 = ax^2 + bx + c$, then $\frac{d}{dx}(y^3y_z) =$ (a) 1 (b) -1 (c) $\frac{4ac - b^2}{a^2}$ (d) 0

Answer: (d) 0

Question 11.

If $f(x) = \sqrt{1 + \cos^2(x^2)}$, then the value of $f'\left(\frac{\sqrt{\pi}}{2}\right)$ is (a) $\frac{\sqrt{\pi}}{6}$ (b) $-\sqrt{\frac{\pi}{6}}$ (c) $\frac{1}{\sqrt{6}}$ (d) $\frac{\pi}{\sqrt{6}}$

Answer:

(b) $-\sqrt{\frac{\pi}{6}}$

Question 12.

If
$$\sqrt{(x+y)} + \sqrt{(y-x)} = a$$
, then $\frac{dy}{dx} =$
(a) $\frac{\sqrt{(x+y)} - \sqrt{y-x}}{\sqrt{y-x} + \sqrt{x+y}}$ (b) $\frac{2\sqrt{x-y}}{\sqrt{x+y} - \sqrt{x-y}}$
(c) $\frac{x+y+\sqrt{xy}}{\sqrt{x+y}}$ (d) $\frac{x^2+y^2+2xy}{x^2+y^2}$

Answer:

(a)
$$\frac{\sqrt{(x+y)} - \sqrt{y-x}}{\sqrt{y-x} + \sqrt{x+y}}$$

Question 13.

If
$$xy^2 = ax^2 + bxy + y^2$$
, then find $\frac{dy}{dx}$
(a) $\frac{2ax + by + y^2}{2xy + bx + 2y}$ (b) $\frac{2ax + by - y^2}{2xy - bx - 2y}$
(c) $\frac{ax + by - xy}{xy + x^2 + y^2}$ (d) $\frac{2x^2 + axy + y^2}{x^2 + y^2 + 2xy}$

Answer: (b) $\frac{2ax+by-y^2}{2xy-bx-2y}$

Question 14.

If
$$y = \tan^{-1} \left[\frac{\sin x + \cos x}{\cos x - \sin x} \right]$$
, then $\frac{dy}{dx}$ is equal to
(a) $\frac{1}{2}$ (b) $\frac{\pi}{4}$
(c) 0 (d) 1

Answer:

(d) 1

Question 15.

The differential coefficient of
$$\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right)$$

is

(a)
$$\sqrt{1-x^2}$$
 (b) $\frac{1}{\sqrt{1-x^2}}$

(c)
$$\frac{1}{2\sqrt{1-x^2}}$$
 (d) x

Answer: (c) $\frac{1}{2\sqrt{1-x^2}}$

Question 16.

If
$$f(x) = \tan^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), 0 \le x < \frac{\pi}{2}$$
, then $f'\left(\frac{\pi}{6}\right)$ is
(a) $-\frac{1}{4}$ (b) $-\frac{1}{2}$
(c) $\frac{1}{4}$ (d) $\frac{1}{2}$

Answer: (d) $\frac{1}{2}$

Question 17.

$$\frac{d}{dx} \left\{ \operatorname{cosec}^{-1} \left(\frac{1+x^2}{2x} \right) \right\} \text{ is equal to}$$
(a) $-\frac{2}{1+x^2}, x \neq 0$ (b) $\frac{2(1+x)}{1+x^2}, x \neq 0$
(c) $\frac{2(1-x^2)}{(1+x^2)|1-x^2|}, x \neq \pm 1, 0$

(d) None of these

Answer: (c) $rac{2(1-x^2)}{(1+x^2)|1-x^2|}, x
eq \pm 1, 0$

Question 18.

If
$$y = \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) + \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right), x > 0$$
, then $\frac{dy}{dx}$ is

equal to

(a) 1 (b) 0

(c) $\frac{\pi}{2}$ (d) None of these

Answer:

(b) 0

Question 19. If $y = e^{\frac{1}{2}\log(1+\tan^2 x)}$, then $\frac{dy}{dx}$ is equal to (a) $\frac{1}{2}\sec^2 x$ (b) $\sec^2 x$ (c) $\sec x \tan x$ (d) $e^{\frac{1}{2}\log(1+\tan^2 x)}$ Answer:

(c) sec x tan x

Question 20.

If $y = e^{3x+7}$, then the value of $\frac{dy}{dx}\Big|_{x=0}$ is (a) 1 (b) 0 (c) -1 (d) $3e^7$ Answer: (d) $3e^7$ Question 21. If $x^2 + y^2 = 1$, then (a) $yy'' - (2y')^2 + 1 = 0$ (b) $yy'' + (y')^2 + 1 = 0$

(c) $yy'' - (y')^2 - 1 = 0$ (d) $yy'' + (2y')^2 + 1 = 0$ Answer: (b) $yy'' + (y')^2 + 1 = 0$

Question 22.

If
$$y = \cos^2\left(\frac{3x}{2}\right) - \sin^2\left(\frac{3x}{2}\right)$$
, then $\frac{d^2y}{dx^2}$ is
(a) $-3\sqrt{1-y^2}$ (b) $9y$
(c) $-9y$ (d) $3\sqrt{1-y^2}$
Answer:

(c) -9y

Question 23. The value of c in Rolle's theorem for the function, $f(x) = \sin 2x$ in $[0, \frac{\pi}{2}]$ is (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$ Answer: (b) $\frac{\pi}{4}$

Question 24.

The value of c in Rolle's Theorem for the function $f(x) = e^x \sin x, x \in [0, \pi]$ is

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{3\pi}{4}$ Answer: (d) $\frac{3\pi}{4}$

Question 25.

A value of c for which the Mean value theorem holds for the function $f(x) = \log_e x$ on the interval

[1, 3] is (a) 2log₃e

(b) $\frac{1}{2}\log_e 3$

(c) $\log_3 e$

(d) $\log_e 3$

Answer:

(a) $2\log_3 e$

Question 26.

The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is (a) $6 \pm \sqrt{(13/3)}$ (b) $6 + \sqrt{(13/3)}$ (c) $6 - \sqrt{(13/3)}$ (d) None of these Answer: (c) $6 - \sqrt{(13/3)}$

Question 27. The value of c in Mean value theorem for the function $f(x) = x(x - 2), x \in [1, 2]$ is (a) $\frac{3}{2}$ (b) $\frac{2}{3}$ (c) $\frac{1}{2}$ (d) $\frac{5}{2}$ Answer: (a) $\frac{3}{2}$

Question 28.

Let $f(x) = \frac{\ln(1+ax) - \ln(1-bx)}{x}$, $x \neq 0$. If f(x) is continuous at x = 0, then f(0) =(a) a - b (b) a + b(c) b - a (d) $\ln a + \ln b$

Answer:

(b) $\ln a + \ln b$

Question 29.

If $f(x) = \begin{cases} \frac{1-\cos 4x}{x^2} , & x < 0\\ a , & x = 0 \end{cases}$ is continuous at $x = \frac{\sqrt{x}}{\sqrt{16} + \sqrt{x} - 4}, \quad x > 0 \end{cases}$

0, then a =

(a) 4 (b) 6 (c) 8 (d) none of these Answer:

(c) 8

Question 30.

The number of discontinuous functions y(x) on [-2, 2] satisfying $x^2 + y^2 = 4$ is (a) 0 (b) 1 (c) 2 (d) >2 Answer: (a) 0

Question 31.
Let
$$f(x) = \frac{1 - \tan x}{4x - \pi}, x \neq \frac{\pi}{4}, x \in \left(0, \frac{\pi}{2}\right)$$
.
If $f(x)$ is continuous in $\left(0, \frac{\pi}{2}\right)$, then $f\left(\frac{\pi}{4}\right) =$
(a) 1 (b) $\frac{1}{2}$
(c) $-\frac{1}{2}$ (d) -1
Answer:
(c) $-\frac{1}{2}$
Question 32.
If $f(x) = \frac{\sqrt{4 + x} - 2}{x}, x \neq 0$ be continuous at $x = 0$, then
 $f(0) =$

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{4}$
(c) 2 (d) $\frac{3}{2}$

Answer: (b) $\frac{1}{4}$

Question 33.

If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, then $\frac{dy}{dx} =$
(a) $\frac{x+1}{x}$ (b) $\frac{1}{1+x}$
(c) $\frac{-1}{(1+x)^2}$ (d) $\frac{x}{1+x}$

Answer: (c) $\frac{-1}{(1+x)^2}$

Question 34. If $y = (1 + x)(1 + x^2)(1 + x^4)....(1 + x^{2n})$, then the value of $\frac{dy}{dx}$ at x = 0 is (a) 0 (b) -1 (c) 1 (d) None of these Answer: (c) 1

Question 35.

If $f(x) = -\sqrt{25 - x^2}$, then $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ is equal to (a) $\frac{1}{24}$ (b) $\frac{1}{5}$ (c) $-\sqrt{24}$ (d) $\frac{1}{\sqrt{24}}$ Answer: (d) $\frac{1}{\sqrt{24}}$ Question 36. If $y = ax^2 + b$, then $\frac{dy}{dx}$ at x = 2 is equal to (a) 4a (b) 3a (c) 2a

(d) None of these

Answer:

(a) 4a

Question 37.
If
$$\sec\left(\frac{x^2 - 2x}{x^2 + 1}\right) = y$$
, then $\frac{dy}{dx}$ is equal to
(a) $\frac{y^2}{x^2}$ (b) $\frac{2y\sqrt{y^2 - 1}(x^2 + x - 1)}{(x^2 + 1)^2}$
(c) $\frac{(x^2 + x - 1)}{y(y^2 - 1)}$ (d) $\frac{x^2 - y^2}{x^2 + y^2}$

Answer: (b) $\frac{2y\sqrt{y^2-1}(x^2+x-1)}{(x^2+1)^2}$

Question 38.

If
$$f(x) = (\log_{\cot x} \tan x)(\log_{\tan x} \cot x)^{-1} + \tan^{-1}\frac{4x}{4-x^2}$$
,

then f'(2) is equal to

(a)	$\frac{1}{2}$	(b)	$-\frac{1}{2}$
(c)	1	(d)	-1

Answer: $\binom{1}{2}$

(a)
$$\frac{1}{2}$$

Question 39.

If
$$y = \log_{10} x + \log_e y$$
, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{y}{y-1}$$
 (b) $\frac{y}{x}$

(c)
$$\frac{\log_{10} e}{x} \left(\frac{y}{y-1} \right)$$
 (d) None of these

Answer: (c) $\frac{\log_{10} e}{x} \left(\frac{y}{y-1} \right)$

Question 40.

If
$$y = \log \left[e^x \left(\frac{x-1}{x+2} \right)^{1/2} \right]$$
, then $\frac{dy}{dx}$ is equal to
(a) 7 (b) $\frac{3}{x-2}$
(c) $\frac{3}{(x-1)}$ (d) None of these

Answer: (d) None of these

Question 41.

If $x^m y^n = (x + y)^{m+n}$, then $\frac{dy}{dx}$ is equal to (a) $\frac{x + y}{xy}$ (b) xy(c) $\frac{x}{y}$ (d) $\frac{y}{x}$

Answer:

(d) $[latex] \frac{y}{x} [/latex]$

Question 42.

If Rolle's theorem holds for the function $f(x) = x^3 + bx^2 + ax + 5$ on [1, 3] with $c = (2 + \frac{1}{\sqrt{3}})$, find the value of a and b.

(a) a = 11, b = -6(b) a = 10, b = 6(c) a = -11, b = 6(d) a = 11, b = 6Answer: (a) a = 11, b = -6

Question 43.

If $y = (\tan x)^{\sin x}$, then $\frac{dy}{dx}$ is equal to (a) sec x + cos x (b) sec x + log tan x (c) $(\tan x)^{\sin x}$ (d) None of these Answer: (d) None of these

Question 44.

If
$$x^{y} = e^{x-y}$$
, then $\frac{dy}{dx}$ is
(a) $\frac{1+x}{1+\log x}$ (b) $\frac{1-\log x}{1+\log x}$
(c) not defined (d) $\frac{\log x}{(1+\log x)^{2}}$

Answer:

(d) $\frac{\log x}{\left(1+\log x\right)^2}$

Question 45.

The derivative of $y = (1 - x)(2 - x) \dots (n - x)$ at x = 1 is equal to (a) 0 (b) (-1)(n - 1)!(c) n! - 1(d) $(-1)^{n-1}(n - 1)!$ Answer: (b) (-1)(n - 1)!

Question 46. If $x^y \cdot y^x = 16$, then the value of $\frac{dy}{dx}$ at (2, 2) is (a) -1 (b) 0 (c) 1 (d) none of these Answer: (a) -1 Question 47.

If
$$y = e^{x+e^{x+e^{x+\dots} to \infty}}$$
, find $\frac{dy}{dx} =$
(a) $\frac{y^2}{1-y}$ (b) $\frac{y^2}{y-1}$
(c) $\frac{y}{1-y}$ (d) $\frac{-y}{1-y}$
Answer:
(c) $\frac{y}{1-y}$