Three Dimensional Geometry

Question 1.
The angle between the line $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and
$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ is
(a) 0
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{4}$

Answer:
(b) $\frac{\pi}{2}$

Question 2.
The angle between the lines passing through the points $(4,7,8),(2,3,4)$ and $(-1,-2,1),(1,2,5)$ is
(a) 0
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$

Answer:
(a) 0

Question 3.

Find the equation of line passing through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z-0}{1}$ at angle $\frac{\pi}{3}$.
(a) $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}$
(b) $\frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}$
(c) $\frac{x}{1}=\frac{y}{3}=\frac{z}{2}$
(d) Both (a) and (b)

Answer:
(d) Both (a) and (b)

Question 4.
Equation of a line passing through $(1,2,-3)$ and parallel to the line $\frac{x-2}{1}=\frac{y+1}{3}=\frac{z-1}{4}$ is
(a) $\frac{x-1}{1}=\frac{y-2}{3}=\frac{z+3}{4}$
(b) $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-1}{-3}$
(c) $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z-4}{-3}$
(d) None of these

Answer:
(a) $\frac{x-1}{1}=\frac{y-2}{3}=\frac{z+3}{4}$

Question 5.
If lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$ are mutually perpendicular, then \boldsymbol{k} is equal to
(a) $-\frac{10}{7}$
(b) $-\frac{7}{10}$
(c) -10
(d) -7

Answer:
(a) $-\frac{10}{7}$

Question 6.
Equation of the plane passing through three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with position vectors

$$
-6 \hat{i}+3 \hat{j}+2 \hat{k}, 3 \hat{i}-2 \hat{j}+4 \hat{k}, 5 \hat{i}+7 \hat{j}+3 \hat{k}
$$

(a) $\quad \stackrel{\pi}{r} \cdot(\hat{i}-\hat{j}-2 \hat{k})+23=0$
(b) $\quad \stackrel{\pi}{r} .(\hat{i}+\hat{j}+7 \hat{k})=23$
(c) $\left.\quad \begin{array}{r}\hat{i} \\ \text {. } \\ i \\ i\end{array} \hat{j}-7 \hat{k}\right)+23=0$
(d) $\stackrel{त}{r} .(\hat{i}-\hat{j}-7 \hat{k})=23$

Answer:
(a) $\pi(\hat{i}-\hat{j}-2 \hat{k})+23=0$

Question 7.
Four points $(0,-1,-1)(-4,4,4)(4,5,1)$ and $(3,9,4)$ are coplanar. Find the equation of the plane containing them.
(a) $5 x+7 y+11 z-4=0$
(b) $5 \mathrm{x}-7 \mathrm{y}+11 \mathrm{z}+4=0$
(c) $5 \mathrm{x}-7 \mathrm{y}-11 \mathrm{z}-4=0$
(d) $5 x+7 y-11 z+4=0$

Answer:
(b) $5 x-7 y+11 z+4=0$

Question 8.
Find the equation of plane passing through the points $\mathrm{P}(1,1,1), \mathrm{Q}(3,-1,2), \mathrm{R}(-3,5,-4)$.
(a) $x+2 y=0$
(b) $x-y=2$
(c) $-x+2 y=2$
(d) $x+y=2$

Answer:
(d) $x+y=2$

Question 9.
The vector equation of the plane passing through the origin and the line of intersection of the plane r.a $=\lambda$ and $r . b=\mu$ is
(a) r. $(\lambda a-\mu b)=0$
(b) r. $(\lambda b-\mu a)=0$
(c) r. $(\lambda a+\mu b)=0$
(d) r. $(\lambda b+\mu a)=0$

Answer:
(b) r. $(\lambda b-\mu a)=0$

Question 10.
The vector equation of a plane passing through the intersection of the planes $r .(\hat{i}+\hat{j}+\hat{k})=6$ and $r .(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and the point $(1,1,1)$ is
(a) $\quad \underset{r}{r} \cdot(3 \hat{i}+4 \hat{j}+5 \hat{k})=1$
(b) $\stackrel{त}{r} \cdot(8 \hat{i}+5 \hat{j}+2 \hat{k})=99$
(c) $\underset{r}{r} \cdot(20 \hat{i}+23 \hat{j}+26 \hat{k})=69$
(d) $\quad \underset{r}{r} \cdot(20 \hat{i}-23 \hat{j}-26 \hat{k})=69$

Answer:
(c) $r \cdot(20 \hat{i}+23 \hat{j}+26 \hat{k})=69$

Question 11.
The lines $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8} \quad$ and
$\frac{x-4}{4}=\frac{y+3}{k}=\frac{z+1}{7}$ are coplanar if $k=$
(a) 4
(b) -4
(c) 2
(d) -2

Answer:
(b) -4

Question 12.
The lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$
are
(a) coplanar
(b) non-coplanar
(c) perpendicular
(d) None of the above

Answer:
(a) coplanar

Question 13.
The angle between the planes $3 x+2 y+z-5=0$ and $x+y-2 z-3=0$ is
(a) $\cos ^{-1}\left(\frac{3}{2 \sqrt{7}}\right)$
(b) $\cos ^{-1}\left(\frac{3}{2 \sqrt{14}}\right)$
(c) $\cos ^{-1}\left(\frac{3}{2 \sqrt{21}}\right)$
(d) None of these

Answer:
(c) $\cos ^{-1}\left(\frac{3}{2 \sqrt{21}}\right)$

Question 14.
The equation of the plane through the point $(0,-4,-6)$ and $(-2,9,3)$ and perpendicular to the plane $x-4 y-2 z=8$ is
(a) $3 x+3 y-2 z=0$
(b) $x-2 y+z=2$
(c) $2 x+y-z=2$
(d) $5 x-3 y+2 z=0$

Answer:
(c) $2 x+y-z=2$

Question 15.
The angle between the planes $r \cdot(\hat{i}+2 \hat{j}+\hat{k})=4$ and $r(-\hat{i}+\hat{j}+2 \hat{k})=9$ is
(a) 30°
(b) 60°
(c) 45°
(d) None of these

Answer:
(b) 60°

Question 16.
The value of p, so that the line

$$
\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2} \text { and } \quad \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}
$$

intersect at right angle, is
(a) $\frac{10}{11}$
(b) $\frac{70}{11}$
(c) $\frac{10}{7}$
(d) $\frac{70}{9}$

Answer:
(b) $\frac{70}{11}$

Question 17.
The shortest distance between the lines $\stackrel{त}{r}=-(\hat{i}+\hat{j}+\hat{k}) \lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ and

$$
\stackrel{\pi}{r}=-\hat{i}+\mu(3 \hat{i}+4 \hat{j}+5 \hat{k}) \text { is }
$$

(a) 1
(b) $\frac{1}{\sqrt{2}}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{1}{\sqrt{6}}$

Answer:
(d) $\frac{1}{\sqrt{6}}$

Question 18.
The shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \quad$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is equal
(a) $3 \sqrt{ } 30$
(b) $\sqrt{ } 30$
(c) $2 \sqrt{ } 30$
(d) None of these

Answer:
(a) $3 \sqrt{ } 30$

Question 19.
The shortest distance between the lines $\mathrm{x}=\mathrm{y}=\mathrm{z}$ and $\mathrm{x}+1-\mathrm{y}=\frac{z}{0}$ is
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{1}{\sqrt{6}}$

Answer:
(d) $\frac{1}{\sqrt{6}}$

Question 20.
The shortest distance between the lines $x=y+2=6 z-6$ and $x+1=2 y=-12 z$ is
(a) $\frac{1}{2}$
(b) 2
(c) 1
(d) $\frac{3}{2}$

Answer:
(b) 2

Question 21.
The angle θ between the line $r=a+\lambda b$ is given by
(a) $\sin ^{-1}\left(\begin{array}{c}\frac{\pi}{n} \\ \frac{b}{\hat{n}} \\ |\vec{b}|\end{array}\right)$
(b) $\cos ^{-1}\left(\begin{array}{l}\frac{\pi}{a} \\ \frac{b}{2} \cdot \hat{n} \\ |\vec{j}|\end{array}\right)$
(c) $\sin ^{-1}\binom{\frac{\pi}{a} \cdot \hat{n}}{|\vec{a}|}$
(d) $\cos ^{-1}\binom{\frac{\pi}{a} \cdot \hat{n}}{\left.\frac{\tilde{a} \mid}{\hat{a}} \right\rvert\,}$

Answer:
(a) $\sin ^{-1}\left(\frac{\tilde{h}_{\pi}^{\pi}}{|\vec{b}|}\right)$

Question 22.
Find the angle between the line $\stackrel{\pi}{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane $\stackrel{\pi}{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4$.
(a) $\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$
(b) $\sin ^{-1}\left(\frac{2}{3}\right)$
(c) $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
(d) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Answer:
(a) $\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$

Question 23.
The angle between the straight line $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z-5}{2}$ and the plane $4 x-2 y+4 z=9$ is
(a) 60°
(b) 90°
(c) 45°
(d) 30°

Answer:
(b) 90°

Question 24.
Distance of the point (α, β, γ) from y-axis is
(a) β
(b) $|\beta|$
(c) $|\beta|+|\gamma|$
(d) $\sqrt{\alpha^{2}+\gamma^{2}}$

Answer:
(d) $\sqrt{\alpha^{2}+\gamma^{2}}$

Question 25.
The distance of the plane $r \cdot\left(\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}-\frac{6}{7} \hat{k}\right)=1 \quad$ from the origin is
(a) 1
(b) 7
(c) $\frac{1}{7}$
(d) None of these

Answer:
(a) 1

Question 26.
The sine of the angle between the straight line
$\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is
(a) $\frac{10}{6 \sqrt{5}}$
(b) $\frac{4}{5 \sqrt{2}}$
(c) $\frac{2 \sqrt{3}}{5}$
(d) $\frac{\sqrt{2}}{10}$

Answer:
(d) $\frac{\sqrt{2}}{10}$

Question 27.
The reflection of the point (α, β, γ) in the $x y$-plane is
(a) $(\alpha, \beta, 0)$
(b) $(0,0, \gamma)$
(c) $(-\alpha,-\beta,-\gamma)$
(d) $(\alpha, \beta,-y)$

Answer:
(d) $(\alpha, \beta,-y)$

Question 28.
The area of the quadrilateral ABCD , where $\mathrm{A}(0,4,1), \mathrm{B}(2,3,-1), \mathrm{C}(4,5,0)$ and $\mathrm{D}(2,6,2)$, is equal to
(a) 9 sq. units
(b) 18 sq. units
(c) 27 sq. units
(d) 81 sq. units

Answer:
(a) 9 sq. units

Question 29.
The locus represented by $x y+y z=0$ is
(a) A pair of perpendicular lines
(b) A pair of parallel lines
(c) A pair of parallel planes
(d) A pair of perpendicular planes

Answer:
(d) A pair of perpendicular planes

Question 30.
Direction cosines of the line that makes equal angles with the three axes in space are
(a) $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{3}, \pm \frac{1}{3}$
(b) $\pm \frac{6}{7}, \pm \frac{2}{7}, \pm \frac{3}{7}$
(c) $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$
(d) $\sqrt{\frac{1}{7}}, \pm \sqrt{\frac{3}{14}}, \frac{1}{\sqrt{14}}$

Answer:
(c) $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$

Question 31.
If the direction ratios of a line are $1,-3,2$, then its direction cosines are
(a) $\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$
(b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
(c) $\frac{-1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$
(d) $\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$

Answer:
(a) $\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$

Question 32.
The cosines of the angle between any two diagonals of a cube is
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $\frac{1}{\sqrt{ } 3}$

Answer:
(a) $\frac{1}{3}$

Question 33.
Which of the following is false?
(a) $30^{\circ}, 45^{\circ}, 60^{\circ}$ can be the direction angles of a line is space.
(b) $90^{\circ}, 135^{\circ}, 45^{\circ}$ can be the direction angles of a line is space.
(c) $120^{\circ}, 60^{\circ}, 45^{\circ}$ can be the direction angles of a line in space.
(d) $60^{\circ}, 45^{\circ}, 60^{\circ}$ can be the direction angles of a line in space.

Answer:
(a) $30^{\circ}, 45^{\circ}, 60^{\circ}$ can be the direction angles of a line is space.

Question 34.
A line makes angles α, β and γ with the co-ordinate axes. If $\alpha+\beta=90^{\circ}$, then γ is equal to
(a) 0°
(b) 90°
(c) 180°
(d) None of these

Answer:
(b) 90°

Question 35.
If a line makes an angle $\theta_{1}, \theta_{2}, \theta_{3}$ with the axis respectively, then $\cos 2 \theta_{1}+\cos 2 \theta_{2}+\cos 2 \theta_{3}=$
(a) -4
(b) -2
(c) -3
(d) -1

Answer:
(d) -1

Question 36.
The coordinates of a point P are $(3,12,4)$ w.r.t. origin O , then the direction cosines of OP are
(a) $3,12,4$
(b) $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$
(c) $\frac{3}{\sqrt{13}}, \frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}$
(d) $\frac{3}{13}, \frac{12}{13}, \frac{4}{13}$

Answer:
(d) $\frac{3}{13}, \frac{12}{13}, \frac{4}{13}$

Question 37.
Find the direction cosines of the line joining $\mathrm{A}(0,7,10)$ and $\mathrm{B}(-1,6,6)$.
(a) $\frac{-1}{3 \sqrt{2}}, \frac{-1}{3 \sqrt{2}}, \frac{2}{3 \sqrt{2}}$
(b) $\frac{1}{3 \sqrt{2}}, \frac{1}{3 \sqrt{2}}, \frac{4}{3 \sqrt{2}}$
(c) $\frac{1}{3}, \frac{-1}{3}, \frac{4}{3}$
(d) None of these

Answer:
(b) $\frac{1}{3 \sqrt{ } 2}, \frac{1}{3 \sqrt{2}}, \frac{4}{3 \sqrt{2}}$

Question 38.
The direction cosines of a line passing through two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are
(a) $\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right),\left(z_{2}-z_{1}\right)$
(b) $\left(x_{2}+x_{1}\right),\left(y_{2}+y_{1}\right),\left(z_{2}+z_{1}\right)$
(c) $\frac{x_{2}-x_{1}}{P Q}, \frac{y_{2}-y_{1}}{P Q}, \frac{z_{2}-z_{1}}{P Q}$
(d) $\frac{x_{2}+x_{1}}{P Q}, \frac{y_{2}+y_{1}}{P Q}, \frac{z_{2}+z_{1}}{P Q}$

Answer:
(c) $\frac{x_{2}-x_{1}}{P Q}, \frac{y_{2}-y_{1}}{P Q}, \frac{z_{2}-z_{1}}{P Q}$

Question 39.
The equation of a line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$, is
(a) $\quad \stackrel{त}{r}=(3 \hat{i}+2 \hat{j}-2 \hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})$
(b) $\quad \stackrel{त}{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}-2 \hat{k})$
(c) $\quad \stackrel{त}{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}-5 \hat{k})$
(d) $\quad \stackrel{त}{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(4 \hat{i}+4 \hat{j}+\hat{k})$

Answer:
(b) $r=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}-2 \hat{k})$

Question 40.
The equation of line passing through the point $(-3,2,-4)$ and equally inclined to the axes are
(a) $x-3=y+2=z-4$
(b) $x+3=y-2=z+4$
(c) $\frac{x+3}{1}=\frac{y-2}{2}=\frac{z+4}{3}$
(d) None of these

Answer:
(b) $x+3=y-2=z+4$

Question 41.
If $1, m$ and n are the direction cosines of line 1 , then the equation of the line (1) passing through (x_{1}, $\left.y_{1}, z_{1}\right)$ is
(a) $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$
(b) $\quad\left(\frac{x-x_{1}}{l}\right)\left(\frac{y-y_{1}}{m}\right)=\left(\frac{z-z_{1}}{n}\right)$
(c) $\frac{x+x_{1}}{l}=\frac{y+y_{i}}{m}=\frac{z+z_{1}}{n}$
(d) None of these

Answer:
(a) $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$

Question 42.
In the figure, a be the position vector of the point A with respect to the origin O .1 is a line parallel to a vector b. The vector equation of line 1 is

(a) $\stackrel{त}{r}=\lambda(\stackrel{\pi}{a} \times \stackrel{\text { n }}{b})$
(b) $\quad \stackrel{\pi}{r}=\lambda \stackrel{\pi}{a}-\stackrel{4}{b}$
(c) $\stackrel{\pi}{r}=\stackrel{\pi}{a}+\lambda \stackrel{\text { u}}{b}$
(d) $\stackrel{\stackrel{\pi}{r}}{r}=\lambda(\stackrel{\pi}{a} \cdot \stackrel{\iota}{b})$

Answer:
(c) $r=a+\lambda b$

Question 43.
The certesian equation of the line 1 when it passes through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and parallel to the vector
$\mathrm{b}=a \hat{i}+b \hat{j}+c \hat{k}$, is
(a) $x-x_{1}=y-y_{1}=z-z_{1}$
(b) $x+x_{1}=y+y_{1}=z+z_{1}$
(c) $\frac{x+x_{1}}{a}=\frac{y+y_{1}}{b}=\frac{z+z_{1}}{c}$
(d) $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

Answer:
(d) $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

Question 44.
The equation of the straight line passing through the point (a, b, c) and parallel to Z -axis is
(a) $\frac{x-a}{1}=\frac{y-b}{1}=\frac{z-c}{0}$
(b) $\frac{x-a}{0}=\frac{y-b}{1}=\frac{z-c}{1}$
(c) $\frac{x-a}{1}=\frac{y-b}{0}=\frac{z-c}{0}$
(d) $\frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1}$

Answer:
(d) $\frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1}$

Question 45.
The coordinates of a point on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of $\frac{6}{\sqrt{12}}$ from the point (1, $2,3)$ is
(a) $(56,43,111)$
(b) $\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$
(c) $(2,1,3)$
(d) $(-2,-1,-3)$

Answer:
(b) $\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$

Question 46.
Find the coordinatets of the point where the line through the points $(5,1,6)$ and $(3,4,1)$ crosses the yz-plane.
(a) $\left(0,-\frac{17}{2}, \frac{13}{2}\right)$
(b) $\left(0, \frac{17}{2},-\frac{13}{2}\right)$
(c) $\left(10, \frac{19}{2}, \frac{13}{2}\right)$
(d) $(0,17,13)$

Answer:
(b) $\left(0, \frac{17}{2},-\frac{13}{2}\right)$

Question 47.
The point $\mathrm{A}(1,2,3), \mathrm{B}(-1,-2,-1)$ and $\mathrm{C}(2,3,2)$ are three vertices of a parallelogram ABCD . Find the equation of CD .
(a) $\frac{x}{1}=\frac{y}{2}=\frac{z}{2}$
(b) $\frac{x+2}{1}=\frac{y+3}{2}=\frac{z-2}{2}$
(c) $\frac{x}{2}=\frac{y}{3}=\frac{z}{2}$
(d) $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-2}{2}$

Answer:
(d) $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-2}{2}$

Question 48.
The equation of the line joining the points $(-3,4,11)$ and $(1,-2,7)$ is
(a) $\frac{x+3}{2}=\frac{y-4}{3}=\frac{z-11}{4}$
(b) $\frac{x+3}{-2}=\frac{y-4}{3}=\frac{z-11}{2}$
(c) $\frac{x+3}{-2}=\frac{y+4}{3}=\frac{z+11}{4}$
(d) $\frac{x+3}{2}=\frac{y+4}{-3}=\frac{z+11}{2}$

Answer:
(b) $\frac{x+3}{-2}=\frac{y-4}{3}=\frac{z-11}{2}$

Question 49.
The vector equation of the line through the points $\mathrm{A}(3,4,-7)$ and $\mathrm{B}(1,-1,6)$ is
(a) $\quad \stackrel{त}{r}=(3 \hat{i}-4 \hat{j}-7 \hat{k})+\lambda(\hat{i}-\hat{j}+6 \hat{k})$
(b) $\quad \stackrel{त}{r}=(\hat{i}-\hat{j}+6 \hat{k})+\lambda(3 \hat{i}-4 \hat{j}-7 \hat{k})$
(c) $\quad \stackrel{\pi}{r}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k})$
(d) $\quad \stackrel{\pi}{r}=(\hat{i}-\hat{j}+6 \hat{k})+\lambda(4 \hat{i}+3 \hat{j}-\hat{k})$

Answer:
(c) $r=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k})$

Question 50.
The angle between the lines $\stackrel{\bar{c}}{r}=(4 \hat{i}-\hat{j})+s(2 \hat{i}+\hat{j}-3 \hat{k})$
and $\stackrel{त}{r}=(\hat{i}-\hat{j}+2 \hat{k})+t(\hat{i}-3 \hat{j}+2 \hat{k})$ is
(a) $\frac{3 \pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{2 \pi}{3}$
(d) $\frac{\pi}{6}$

Answer:
(d) $\frac{\pi}{6}$

Question 51.
The angle between the line $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
(a) 30°
(b) 45°
(c) 90°
(d) 0°

Answer:
(c) 90°

Question 52.
The angle between the lines $3 \mathrm{x}=6 \mathrm{y}=2 \mathrm{z}$ and $\frac{x-2}{-5}=\frac{y-1}{7}=\frac{z-3}{1} \quad$ is
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$

Answer:
(d) $\frac{\pi}{2}$

Question 53.
Find the angle between the pair of lines given by

$$
\begin{aligned}
& \begin{array}{r}
\hat{\pi} \\
r=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \text { and } \\
\underset{r}{\pi}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k}) . \\
\text { (a) } \cos ^{-1}\left(\frac{19}{21}\right) \\
\text { (b) } \cos ^{-1}\left(\frac{23}{19}\right) \\
\text { (c) } \cos ^{-1}\left(\frac{17}{13}\right)
\end{array} \\
& \text { (d) } \cos ^{-1}\left(\frac{13}{9}\right)
\end{aligned}
$$

Answer:
(a) $\cos ^{-1}\left(\frac{19}{21}\right)$

Question 54.
The angle between the lines $x=1, y=2$ and $y=-1, z=0$ is
(a) 90°
(b) 30°
(c) 60°
(d) 0°

Answer:
(a) 90°

Question 55.
Shortest distance between the two lines

$$
\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7} \text { and } \frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5} \text { is }
$$

(a) 0
(b) $\frac{1}{2 \sqrt{3}}$
(c) 3
(d) None of these

Answer:
(a) 0

Question 56.
The distance between line $\stackrel{\stackrel{\pi}{r}}{r}=\stackrel{त}{a}+t \stackrel{\text { b }}{b}$ and $\stackrel{त}{r}=\vec{a}_{2}+s \stackrel{\text { b }}{b}$
is
(a) $\left|\left(\stackrel{\bar{त}}{a_{2}}-\stackrel{\bar{a}}{a_{1}}\right) \times \stackrel{\tilde{a}}{b}\right|$

(c) $\frac{\left|\left(\bar{a}_{2}-\bar{a}_{1}\right) \times \hat{b}\right|}{\left|\vec{a}_{2}-\bar{a}_{1}\right|}$
(d) $\frac{\left|\left(\begin{array}{c}\overline{a_{2}}\end{array}-\bar{a}_{1}\right) \times \hat{b}\right|}{\left|a_{2}-a_{1}\right||\overline{\hat{a}}|}$

Answer:
(b) $\frac{\left|\left(\tilde{a}_{2}-a_{1}\right) \times b\right|}{|b|}$

Question 57.
The distance between the lines given by $\stackrel{त}{r}=\hat{i}+\hat{j}+\lambda(\hat{i}-2 \hat{j}+3 \hat{k})$ and

$$
\stackrel{\bar{r}}{r}=(2 \hat{i}-3 \hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k}) \text { is }
$$

(a) $\sqrt{\frac{59}{14}}$
(b) $\sqrt{\frac{59}{7}}$
(c) $\sqrt{\frac{118}{7}}$
(d) $\frac{\sqrt{59}}{7}$

Answer:
(b) $\sqrt{\frac{59}{7}}$

Question 58.
The distance between the lines $\frac{x-4}{5}=\frac{y+1}{2}=\frac{z}{1}$ and $\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-3}{1}$ is
(a) $5 \sqrt{129}$
(b) $\frac{\sqrt{129}}{5}$
(c) $\sqrt{\frac{129}{10}}$
(d) $\sqrt{\frac{129}{5}}$

Answer:
(d) $\sqrt{\frac{129}{5}}$

Question 59.
The direction cosines of the unit vector perpendicular to the plane $r \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$ passing through the origin are
(a) $\frac{6}{7}, \frac{3}{7}, \frac{2}{7}$
(b) $6,3,2$
(c) $-\frac{6}{7}, \frac{3}{7}, \frac{2}{7}$
(d) $-6,3,2$

Answer:
(c) $-\frac{6}{7}, \frac{3}{7}, \frac{2}{7}$

Question 60.
The coordinate of the foot of perpendicular drawn from origin to the plane $2 x-3 y+4 z-6=0$ is
(a) $\left(\frac{2}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{4}{\sqrt{29}}\right)$
(b) $\left(\frac{12}{29}, \frac{-18}{29}, \frac{24}{29}\right)$
(c) $(12,-18,24$
(d) $\left(\frac{12}{\sqrt{29}}, \frac{-18}{\sqrt{29}}, \frac{24}{\sqrt{29}}\right)$

Answer:
(d) $\left(\frac{12}{\sqrt{ } 29}, \frac{-18}{\sqrt{29}}, \frac{24}{\sqrt{29}}\right)$

Question 61.
The vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector
$3 \hat{i}+5 \hat{j}-6 \hat{k}$ is
$\begin{array}{ll}\text { (a) } & \underset{r}{r} .(3 \hat{i}+5 \hat{j}-6 \hat{k})=7 \\ \text { (b) } & \stackrel{त}{r} .(3 \hat{i}+5 \hat{j}-6 \hat{k})=\frac{7}{\sqrt{70}}\end{array}$
(c) $\quad \underset{r}{r}\left(\frac{3}{70} \hat{i}+\frac{5}{70} \hat{j}-\frac{6}{70} \hat{k}\right)=7 \sqrt{70}$
(d) $r \cdot\left(\frac{3 \hat{i}}{70}+\frac{5 \hat{j}}{70}-\frac{6 \hat{k}}{70}\right)=7$

Answer:
(d) $r \cdot\left(\frac{3 \hat{i}}{70}+\frac{5 \hat{j}}{70}-\frac{6 \hat{k}}{70}\right)=7$

Question 62.
Find the vector equation of the plane which is at a distance of 8 units from the origin and which is
normal to the vector $2 \hat{i}+\hat{j}+2 \hat{k}$.
$\begin{array}{ll}\text { (a) } & \vec{r} \\ r\end{array}(2 \hat{i}+\hat{j}+2 \hat{k})=0 \quad$ (b) $\quad \vec{r} .(\hat{i}+\hat{j}+\hat{k})=24$
(c) $\quad \stackrel{\pi}{r} \cdot(2 \hat{i}+\hat{j}+2 \hat{k})=24$
(d) None of these

Answer:
(c) $r \cdot(2 \hat{i}+\hat{j}+2 \hat{k})=24$

Question 63.
Find the length of perpendicular from the origin to the plane $r(3 \hat{i}-4 \hat{j}+12 \hat{k})$.
(a) $\frac{5}{13}$
(b) $\frac{5}{\sqrt{13}}$
(c) $\frac{5}{23}$
(d) $\frac{\sqrt{5}}{13}$

Answer:
(a) $\frac{5}{13}$

Question 64.
The equation of the plane passing through three non- collinear points with position vectors $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is
(a) $\mathrm{r} .(\mathrm{b} \times \mathrm{c}+\mathrm{c} \times \mathrm{a}+\mathrm{a} \times \mathrm{b})=0$
(b) r. $(\mathrm{b} \times \mathrm{c}+\mathrm{c} \times \mathrm{a}+\mathrm{a} \times \mathrm{b})=[\mathrm{abc}]$
(c) $\mathrm{r} .(\mathrm{a} \times(\mathrm{b}+\mathrm{c}))=[\mathrm{abc}]$
(d) r. $(\mathrm{a}+\mathrm{b}+\mathrm{c})=0$

Answer:
(b) $\mathrm{r} .(\mathrm{b} \times \mathrm{c}+\mathrm{c} \times \mathrm{a}+\mathrm{a} \times \mathrm{b})=[\mathrm{abc}]$

