Relations and Functions

Question 1.
The function $f: A \rightarrow B$ defined by $f(x)=4 x+7, x \in R$ is
(a) one-one
(b) Many-one
(c) Odd
(d) Even

Answer:
(a) one-one

Question 2.
The smallest integer function $f(x)=[x]$ is
(a) One-one
(b) Many-one
(c) Both (a) \& (b)
(d) None of these

Answer:
(b) Many-one

Question 3.
The function $f: R \rightarrow R$ defined by $f(x)=3-4 x$ is
(a) Onto
(b) Not onto
(c) None one-one
(d) None of these

Answer:
(a) Onto

Question 4.
The number of bijective functions from set A to itself when A contains 106 elements is
(a) 106
(b) $(106)^{2}$
(c) 106 !
(d) 2^{106}

Answer:
(c) 106 !

Question 5.
If $f(x)=\left(a x^{2}+b\right)^{3}$, then the function g such that $f(g(x))=g(f(x))$ is given by
(a) $g(x)=\left(\frac{b-x^{1 / 3}}{a}\right)$
(b) $g(x)=\frac{1}{\left(a x^{2}+b\right)^{3}}$
(c) $g(x)=\left(a x^{2}+b\right)^{1 / 3}$
(d) $g(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$

Answer:
(d) $g(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$

Question 6.
If $f: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R$ is such that $f(x)=x^{2}, g(x)=\tan x$ and $h(x)=\log x$, then the value of $[\operatorname{ho}($ gof $)](x)$, if $x=\frac{\sqrt{\pi}}{2}$ will be
(a) 0
(b) 1
(c) -1
(d) 10

Answer:
(a) 0

Question 7.
If $f: R \rightarrow R$ and $g: R \rightarrow R$ defined by $f(x)=2 x+3$ and $g(x)=x^{2}+7$, then the value of x for which $\mathrm{f}(\mathrm{g}(\mathrm{x}))=25$ is
(a) ± 1
(b) ± 2
(c) ± 3
(d) ± 4

Answer:
(b) ± 2

Question 8.
Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}: \mathrm{f}(\mathrm{x})=\frac{(2 x-1)}{2}$ and $\mathrm{g}: \mathrm{Q} \rightarrow \mathrm{R}: \mathrm{g}(\mathrm{x})=\mathrm{x}+2$ be two functions. Then, (gof) $\left(\frac{3}{2}\right)$ is
(a) 3
(b) 1
(c) $\frac{7}{2}$
(d) None of these

Answer:
(a) 3

Question 9.
Let $f(x)=\frac{x-1}{x+1}$, then $\mathrm{f}(\mathrm{f}(\mathrm{x}))$ is
(a) $\frac{1}{x}$
(b) $-\frac{1}{x}$
(c) $\frac{1}{x+1}$
(d) $\frac{1}{x-1}$

Answer:
(b) $-\frac{1}{x}$

Question 10.
If $\mathrm{f}(\mathrm{x})=1-\frac{1}{x}$, then $\mathrm{f}\left(\mathrm{f}\left(\frac{1}{x}\right)\right)$
(a) $\frac{1}{x}$
(b) $\frac{1}{1+x}$
(c) $\frac{x}{x-1}$
(d) $\frac{1}{x-1}$

Answer:
(c) $\frac{x}{x-1}$

Question 11.
If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{h}: \mathrm{R} \rightarrow \mathrm{R}$ are such that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}, \mathrm{~g}(\mathrm{x})=\tan \mathrm{x}$ and $\mathrm{h}(\mathrm{x})=\log \mathrm{x}$, then the value of (go(foh)) (x), if $x=1$ will be
(a) 0
(b) 1
(c) -1
(d) π

Answer:
(a) 0

Question 12.
If $f(x)=\frac{3 x+2}{5 x-3}$ then (fof)(x) is
(a) x
(b) $-x$
(c) $f(x)$
(d) $-\mathrm{f}(\mathrm{x})$

Answer:
(a) x

Question 13.
If the binary operation * is defind on the set Q^{+}of all positive rational numbers by a $\mathrm{a}^{*}=\frac{a b}{4}$.
Then, $3 *\left(\frac{1}{5} * \frac{1}{2}\right)$ is equal to
(a) $\frac{3}{160}$
(b) $\frac{5}{160}$
(c) $\frac{3}{10}$
(d) $\frac{3}{40}$

Answer:
(a) $\frac{3}{160}$

Question 14.
The number of binary operations that can be defined on a set of 2 elements is
(a) 8
(b) 4
(c) 16
(d) 64

Answer:
(c) 16

Question 15.
Let * be a binary operation on Q , defined by a * $\mathrm{b}=\frac{3 a b}{5}$ is
(a) Commutative
(b) Associative
(c) Both (a) and (b)
(d) None of these

Answer:
(c) Both (a) and (b)

Question 16.
Let * be a binary operation on set Q of rational numbers defined as $\mathrm{a} * \mathrm{~b}=\frac{a b}{5}$. Write the identity for *.
(a) 5
(b) 3
(c) 1
(d) 6

Answer:
(a) 5

Question 17.
For binary operation * defind on $\mathrm{R}-\{1\}$ such that $\mathrm{a} * \mathrm{~b}=\frac{a}{b+1}$ is
(a) not associative
(b) not commutative
(c) commutative
(d) both (a) and (b)

Answer:
(d) both (a) and (b)

Question 18.
The binary operation * defind on set R , given by $\mathrm{a} * \mathrm{~b}=\frac{a+b}{2}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ is
(a) commutative
(b) associative
(c) Both (a) and (b)
(d) None of these

Answer:
(a) commutative

Question 19.
Let $\mathrm{A}=\mathrm{N} \times \mathrm{N}$ and ${ }^{*}$ be the binary operation on A defined by $(\mathrm{a}, \mathrm{b})^{*}(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$. Then * is
(a) commutative
(b) associative
(c) Both (a) and (b)
(d) None of these

Answer:
(c) Both (a) and (b)

Question 20.
Find the identity element in the set I^{+}of all positive integers defined by $a * b=a+b$ for $a l l a, b \in$ I^{+}.
(a) 1
(b) 2
(c) 3
(d) 0

Answer:
(d) 0

Question 21.
Let * be a binary operation on set $\mathrm{Q}-\{1\}$ defind by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}: \mathrm{a}, \mathrm{b} \in \mathrm{Q}-\{1\}$. Then * is
(a) Commutative
(b) Associative
(c) Both (a) and (b)
(d) None of these

Answer:
(c) Both (a) and (b)

Question 22.
The binary operation * defined on N by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{N}$ is
(a) commutative only
(b) associative only
(c) both commutative and associative
(d) none of these

Answer:
(c) both commutative and associative

Question 23.
The number of commutative binary operation that can be defined on a set of 2 elements is
(a) 8
(b) 6
(c) 4
(d) 2

Answer:
(d) 2

Question 24.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to $\mathrm{b} \forall \mathrm{a}, \mathrm{b} \in \mathrm{T}$. Then R is
(a) reflexive but not transitive
(b) transitive but not symmetric
(c) equivalence
(d) None of these

Answer:
(c) equivalence

Question 25.
The maximum number of equivalence relations on the set $\mathrm{A}=\{1,2,3\}$ are
(a) 1
(b) 2
(c) 3
(d) 5

Answer:
(d) 5

Question 26.
Let us define a relation R in R as $a R b$ if $a \geq b$. Then R is
(a) an equivalence relation
(b) reflexive, transitive but not symmetric
(c) symmetric, transitive but not reflexive
(d) neither transitive nor reflexive but symmetric

Answer:
(b) reflexive, transitive but not symmetric

Question 27.
Let $\mathrm{A}=\{1,2,3\}$ and consider the relation $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$. Then R is
(a) reflexive but not symmetric
(b) reflexive but not transitive
(c) symmetric and transitive
(d) neither symmetric, nor transitive

Answer:
(a) reflexive but not symmetric

Question 28.
The identity element for the binary operation * defined on $\mathrm{Q}-\{0\}$ as $\mathrm{a} * \mathrm{~b}=\frac{a b}{2} \forall \mathrm{a}, \mathrm{b} \in \mathrm{Q}-\{0)$ is
(a) 1
(b) 0
(c) 2
(d) None of these

Answer:
(c) 2

Question 29.
Let $\mathrm{A}=\{1,2,3, \ldots \mathrm{n}\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}\}$. Then the number of surjections from A into B is
(a) ${ }^{n} P_{2}$
(b) $2^{\mathrm{n}}-2$
(c) $2^{n}-1$
(d) none of these

Answer:
(b) $2^{n}-2$

Question 30.
Let $f: R \rightarrow R$ be defind by $f(x)=\frac{1}{x} \forall x \in R$. Then f is
(a) one-one
(b) onto
(c) bijective
(d) f is not defined

Answer:
(d) f is not defined

Question 31.
Which of the following functions from Z into Z are bijective?
(a) $f(x)=x^{3}$
(b) $f(x)=x+2$
(c) $f(x)=2 x+1$
(d) $f(x)=x^{2}+1$

Answer:
(b) $f(x)=x+2$

Question 32.
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be the functions defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+5$. Then $\mathrm{f}^{-1}(\mathrm{x})$ is
(a) $(x+5)^{\frac{1}{3}}$
(b) $(x-5)^{\frac{1}{3}}$
(c) $(5-x)^{\frac{1}{3}}$
(d) $5-\mathrm{x}$

Answer:
(b) $(x-5)^{\frac{1}{3}}$

Question 33.
Let $\mathrm{f}: \mathrm{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\frac{3 x+2}{5 x-3}$. Then
(a) $f^{-1}(x)=f(x)$
(b) $f^{-1}(x)=-f(x)$
(c) (fof) $x=-x$
(d) $f^{-1}(x)=\frac{1}{19} f(x)$

Answer:
(a) $f^{-1}(x)=f(x)$

Question 34.
Let $f: R \rightarrow R$ be given by $f(x)=\tan x$. Then $f^{-1}(1)$ is
(a) $\frac{\pi}{4}$
(b) $\left\{\mathrm{n} \pi+\frac{\pi}{4} ; \mathrm{n} \in \mathrm{Z}\right\}$
(c) Does not exist
(d) None of these

Answer:
(b) $\left\{\mathrm{n} \pi+\frac{\pi}{4} ; \mathrm{n} \in \mathrm{Z}\right\}$

Question 35.
Let R be a relation on the set N of natural numbers denoted by $\mathrm{nRm} \Leftrightarrow \mathrm{n}$ is a factor of m (i.e. $\mathrm{n} \mid$
m). Then, R is
(a) Reflexive and symmetric
(b) Transitive and symmetric
(c) Equivalence
(d) Reflexive, transitive but not symmetric

Answer:
(d) Reflexive, transitive but not symmetric

Question 36.
Let $\mathrm{S}=\{1,2,3,4,5\}$ and let $\mathrm{A}=\mathrm{S} \times \mathrm{S}$. Define the relation R on A as follows:
$(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ iff ad $=\mathrm{cb}$. Then, R is
(a) reflexive only
(b) Symmetric only
(c) Transitive only
(d) Equivalence relation

Answer:
(d) Equivalence relation

Question 37.
Let R be the relation "is congruent to" on the set of all triangles in a plane is
(a) reflexive
(b) symmetric
(c) symmetric and reflexive
(d) equivalence

Answer:
(d) equivalence

Question 38.
Total number of equivalence relations defined in the set $S=\{a, b, c\}$ is
(a) 5
(b) 3 !
(c) 23
(d) 33

Answer:
(a) 5

Question 39.
The relation R is defined on the set of natural numbers as $\{(a, b): a=2 b\}$. Then, R^{-1} is given by
(a) $\{(2,1),(4,2),(6,3), \ldots\}$
(b) $\{(1,2),(2,4),(3,6), \ldots \ldots \ldots\}$
(c) R^{-1} is not defiend
(d) None of these

Answer:
(b) $\{(1,2),(2,4),(3,6), \ldots \ldots .$.

Question 40.
Let $\mathrm{X}=\{-1,0,1\}, \mathrm{Y}=\{0,2\}$ and a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ defiend by $\mathrm{y}=2 \mathrm{x}^{4}$, is
(a) one-one onto
(b) one-one into
(c) many-one onto
(d) many-one into

Answer:
(c) many-one onto

Question 41.
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$ then $\mathrm{f}(\mathrm{x})$ is
(a) one-one onto
(b) one-one but not onto
(c) onto but not one-one
(d) None of these

Answer:
(d) None of these

Question 42.
Let $g(x)=x^{2}-4 x-5$, then
(a) g is one-one on R
(b) g is not one-one on R
(c) g is bijective on R
(d) None of these

Answer:
(b) g is not one-one on R

Question 43.
Let $\mathrm{A}=\mathrm{R}-\{3\}, \mathrm{B}=\mathrm{R}-\{1\}$. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be defined by $f(x)=\frac{x-2}{x-3}$. Then,
(a) f is bijective
(b) f is one-one but not onto
(c) f is onto but not one-one
(d) None of these

Answer:
(a) f is bijective

Question 44.
The mapping $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is given by $\mathrm{f}(\mathrm{n})=1+\mathrm{n}^{2}, \mathrm{n} \in \mathrm{N}$ when N is the set of natural numbers is
(a) one-one and onto
(b) onto but not one-one
(c) one-one but not onto
(d) neither one-one nor onto

Answer:
(c) one-one but not onto

Question 45.
The function $f: R \rightarrow R$ given by $f(x)=x^{3}-1$ is
(a) a one-one function
(b) an onto function
(c) a bijection
(d) neither one-one nor onto

Answer:
(c) a bijection

Question 46.
Let $\mathrm{f}:[0, \infty) \rightarrow[0,2]$ be defined by $f(x)=\frac{2 x}{1+x}$, then f is
(a) one-one but not onto
(b) onto but not one-one
(c) both one-one and onto
(d) neither one-one nor onto

Answer:
(a) one-one but not onto

Question 47.
If N be the set of all-natural numbers, consider $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ such that $\mathrm{f}(\mathrm{x})=2 \mathrm{x}, \forall \mathrm{x} \in \mathrm{N}$, then f is
(a) one-one onto
(b) one-one into
(c) many-one onto
(d) None of these

Answer:
(b) one-one into

Question 48.
Let $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ is a function defined by $f(x)=x|x|$ then f is
(a) a bijection
(b) injection but not surjection
(c) surjection but not injection
(d) neither injection nor surjection

Answer:
(a) a bijection

Question 49.
Let $f: R \rightarrow R$ be a function defined by $f(x)=x^{3}+4$, then f is
(a) injective
(b) surjective
(c) bijective
(d) none of these

Answer:
(c) bijective

Question 50.
If $\mathrm{f}(\mathrm{x})=\left(\mathrm{ax}{ }^{2}-\mathrm{b}\right)^{3}$, then the function g such that $\mathrm{f}\{\mathrm{g}(\mathrm{x})\}=\mathrm{g}\{\mathrm{f}(\mathrm{x})\}$ is given by
(a) $g(x)=\left(\frac{b-x^{1 / 3}}{a}\right)^{1 / 2}$
(b) $g(x)=\frac{1}{\left(a x^{2}+b\right)^{3}}$
(c) $g(x)=\left(a x^{2}+b\right)^{1 / 3}$
(d) $g(x)=\left(\frac{x^{1 / 3}+b}{a}\right)^{1 / 2}$

Answer:
(d) $g(x)=\left(\frac{x^{1 / 3}+b}{a}\right)^{1 / 2}$

Question 51.
If $\mathrm{f}:[1, \infty) \rightarrow[2, \infty)$ is given by $f(x)=x+\frac{1}{x}$, then f^{-1} equals to
(a) $\frac{x+\sqrt{x^{2}-4}}{2}$
(b) $\frac{x}{1+x^{2}}$
(c) $\frac{x-\sqrt{x^{2}-4}}{2}$
(d) $1+\sqrt{x^{2}-4}$

Answer:
(a) $\frac{x+\sqrt{x^{2}-4}}{2}$

Question 52.
Let $f(x)=x^{2}-x+1, x \geq \frac{1}{2}$, then the solution of the equation $f(x)=f^{-1}(x)$ is
(a) $x=1$
(b) $x=2$
(c) $x=\frac{1}{2}$
(d) None of these

Answer:
(a) $x=1$

Question 53.
Which one of the following function is not invertible?
(a) $f: R \rightarrow R, f(x)=3 x+1$
(b) $\mathrm{f}: \mathrm{R} \rightarrow[0, \infty), f(\mathrm{x})=\mathrm{x}^{2}$
(c) $\mathrm{f}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}, \mathrm{f}(\mathrm{x})=\frac{1}{x^{3}}$
(d) None of these

Answer:
(d) None of these

Question 54.
The inverse of the function $y=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is
(a) $\log _{10}(2-x)$
(b) $\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)$
(c) $\frac{1}{2} \log _{10}(2 x-1)$
(d) $\frac{1}{4} \log \left(\frac{2 x}{2-x}\right)$

Answer:
(b) $\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)$

Question 55.
If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defind by $\mathrm{f}(\mathrm{x})=\frac{2 x-7}{4}$ is an invertible function, then find f^{-1}.
(a) $\frac{4 x+5}{2}$
(b) $\frac{4 x+7}{2}$
(c) $\frac{3 x+2}{2}$
(d) $\frac{9 x+3}{5}$

Answer:
(b) $\frac{4 x+7}{2}$

Question 56.
Consider the function f in $\mathrm{A}=\mathrm{R}-\left\{\frac{2}{3}\right\}$ defiend as $f(x)=\frac{4 x+3}{6 x-4}$. Find f^{-1}.
(a) $\frac{3+4 x}{6 x-4}$
(b) $\frac{6 x-4}{3+4 x}$
(c) $\frac{3-4 x}{6 x-4}$
(d) $\frac{9+2 x}{6 x-4}$

Answer:
(a) $\frac{3+4 x}{6 x-4}$

Question 57.
If f is an invertible function defined as $\mathrm{f}(\mathrm{x})=\frac{3 x-4}{5}$, then $\mathrm{f}^{-1}(\mathrm{x})$ is
(a) $5 x+3$
(b) $5 x+4$
(c) $\frac{5 x+4}{3}$
(d) $\frac{3 x+2}{3}$

Answer:
(c) $\frac{5 x+4}{3}$

Question 58.
If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\frac{3 x+5}{2}$ is an invertible function, then find f^{-1}.
(a) $\frac{2 x-5}{3}$
(b) $\frac{x-5}{3}$
(c) $\frac{5 x-2}{3}$
(d) $\frac{x-2}{3}$

Answer:
(a) $\frac{2 x-5}{3}$

Question 59.
Let $f: R \rightarrow R, g: R \rightarrow R$ be two functions such that $f(x)=2 x-3, g(x)=x^{3}+5$. The function $(f o g)^{-1}(x)$ is equal to
(a) $\left(\frac{x+7}{2}\right)^{1 / 3}$
(b) $\left(x-\frac{7}{2}\right)^{1 / 3}$
(c) $\left(\frac{x-2}{7}\right)^{1 / 3}$
(d) $\left(\frac{x-7}{2}\right)^{1 / 3}$

Answer:
(d) $\left(\frac{x-7}{2}\right)^{1 / 3}$

Question 60.
Let * be a binary operation on set of integers I, defined by a * $b=a+b-3$, then find the value of 3 * 4 .
(a) 2
(b) 4
(c) 7
(d) 6

Answer:
(c) 7

Question 61.
If * is a binary operation on set of integers I defined by $a * b=3 a+4 b-2$, then find the value of 4 * 5 .
(a) 35
(b) 30
(c) 25
(d) 29

Answer:
(b) 30

Question 62.
Let * be the binary operation on N given by a ${ }^{*} b=\operatorname{HCF}(a, b)$ where, $a, b \in N$. Find the value of $22 * 4$.
(a) 1
(b) 2
(c) 3
(d) 4

Answer:
(b) 2

Question 63.
Consider the binary operation * on Q defind by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+12 \mathrm{~b}+\mathrm{ab}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$. Find $2 * \frac{1}{3}$
(a) $\frac{20}{3}$
(b) 4
(c) 18
(d) $\frac{16}{3}$

Answer:
(a) $\frac{20}{3}$

Question 64.
The domain of the function $f(x)=\frac{1}{\sqrt{\{\sin x\}+\{\sin (\pi+x)\}}}$ where $\{$.$\} denotes fractional part, is$
(a) $[0, \pi]$
(b) $(2 \mathrm{n}+1) \pi / 2, \mathrm{n} \in \mathrm{Z}$
(c) $(0, \pi)$
(d) None of these

Answer:
(d) None of these

Question 65.
Range of $f(x)=\sqrt{(1-\cos x) \sqrt{(1-\cos x) \sqrt{(1-\cos x) \ldots \ldots \infty}}}$
(a) $[0,1]$
(b) $(0,1)$
(c) $[0,2]$
(d) $(0,2)$

Answer:
(c) $[0,2]$

