Relations and Functions

Question 1. The function $f : A \rightarrow B$ defined by $f(x) = 4x + 7, x \in R$ is (a) one-one (b) Many-one (c) Odd (d) Even Answer: (a) one-one Question 2. The smallest integer function f(x) = [x] is (a) One-one (b) Many-one (c) Both (a) & (b) (d) None of these Answer: (b) Many-one Question 3. The function $f: R \rightarrow R$ defined by f(x) = 3 - 4x is (a) Onto (b) Not onto (c) None one-one (d) None of these Answer: (a) Onto Question 4. The number of bijective functions from set A to itself when A contains 106 elements is (a) 106 (b) $(106)^2$ (c) 106! (d) 2^{106}

Answer: (c) 106!

Question 5.

If $f(x) = (ax^2 + b)^3$, then the function g such that f(g(x)) = g(f(x)) is given by (a) $g(x) = \left(\frac{b-x^{1/3}}{a}\right)$ (b) $g(x) = \frac{1}{(ax^2+b)^3}$ (c) $g(x) = (ax^2 + b)^{1/3}$ (d) $g(x) = \left(\frac{x^{1/3}-b}{a}\right)^{1/2}$ Answer: (d) $g(x) = \left(\frac{x^{1/3}-b}{a}\right)^{1/2}$

Question 6.

If f : R \rightarrow R, g : R \rightarrow R and h : R \rightarrow R is such that f(x) = x², g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if $x = \frac{\sqrt{\pi}}{2}$ will be (a) 0(b) 1 (c) -1(d) 10 Answer: (a) 0Question 7. If f : R \rightarrow R and g : R \rightarrow R defined by f(x) = 2x + 3 and g(x) = x² + 7, then the value of x for which f(g(x)) = 25 is (a) ± 1 (b) ± 2 $(c) \pm 3$ $(d) \pm 4$ Answer: (b) ± 2

Question 8.

Let $f: N \to R: f(x) = \frac{(2x-1)}{2}$ and $g: Q \to R: g(x) = x + 2$ be two functions. Then, (gof) $(\frac{3}{2})$ is (a) 3 (b) 1 (c) $\frac{7}{2}$ (d) None of these

Answer: (a) 3 Question 9. Let $f(x) = \frac{x-1}{x+1}$, then f(f(x)) is (a) $\frac{1}{x}$ $(b) - \frac{1}{x}$ $(c) \frac{1}{x+1}$ $(d) \frac{1}{x-1}$ Answer: $(b) - \frac{1}{x}$ Question 10. If $f(x) = 1 - \frac{1}{x}$, then $f(f(\frac{1}{x}))$ (a) $\frac{1}{x}$ (b) $\frac{1}{1+x}$ (c) $\frac{x}{x-1}$ (d) $\frac{1}{x-1}$ Answer: (c) $\frac{x}{x-1}$ Question 11. If $f: R \to R$, $g: R \to R$ and $h: R \to R$ are such that $f(x) = x^2$, $g(x) = \tan x$ and $h(x) = \log x$, then the value of (go(foh))(x), if x = 1 will be (a) 0 (b) 1 (c) -1(d) π Answer: (a) 0 Question 12. If $f(x) = \frac{3x+2}{5x-3}$ then (fof)(x) is (a) x (b) -x (c) f(x)(d) - f(x)Answer: (a) x

Question 13.

If the binary operation * is defind on the set Q+ of all positive rational numbers by a * b = $\frac{ab}{4}$. Then, $3 * \left(\frac{1}{5} * \frac{1}{2}\right)$ is equal to (a) $\frac{3}{160}$ (b) $\frac{5}{160}$ (c) $\frac{3}{10}$ (d) $\frac{3}{40}$

Answer:

(a) $\frac{3}{160}$

Question 14.

The number of binary operations that can be defined on a set of 2 elements is

(a) 8 (b) 4 (c) 16 (d) 64 Answer:

(c) 16

Question 15.

Let * be a binary operation on Q, defined by a * b = $\frac{3ab}{5}$ is

(a) Commutative(b) Associative

(c) Both (a) and (b)

(d) None of these

Answer:

(c) Both (a) and (b)

Question 16.

Let * be a binary operation on set Q of rational numbers defined as a * $b = \frac{ab}{5}$. Write the identity for *. (a) 5 (b) 3 (c) 1 (d) 6 Answer: (a) 5

Question 17. For binary operation * defind on $R - \{1\}$ such that a * b = $\frac{a}{b+1}$ is

(a) not associative (b) not commutative (c) commutative (d) both (a) and (b) Answer: (d) both (a) and (b) (a) = (a) + (Question 18. The binary operation * defind on set R, given by a * b = $\frac{a+b}{2}$ for all a, b \in R is (a) commutative (b) associative (c) Both (a) and (b) (d) None of these Answer: (a) commutative Question 19. Let $A = N \times N$ and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is (a) commutative (b) associative (c) Both (a) and (b) (d) None of these Answer: (c) Both (a) and (b) Question 20. Find the identity element in the set I⁺ of all positive integers defined by a * b = a + b for all a, b \in I⁺. (a) 1 (b) 2(c) 3(d) 0Answer: (d) 0Question 21. Let * be a binary operation on set $Q - \{1\}$ defind by a * b = a + b - ab : a, b $\in Q - \{1\}$. Then * is (a) Commutative (b) Associative (c) Both (a) and (b) (d) None of these

Answer: (c) Both (a) and (b) Question 22. The binary operation * defined on N by a * b = a + b + ab for all $a, b \in N$ is (a) commutative only (b) associative only (c) both commutative and associative (d) none of these Answer: (c) both commutative and associative Question 23. The number of commutative binary operation that can be defined on a set of 2 elements is (a) 8 (b) 6 (c) 4 (d) 2Answer: (d) 2Question 24. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to $b \forall a, b \in T$. Then R is (a) reflexive but not transitive (b) transitive but not symmetric (c) equivalence (d) None of these Answer: (c) equivalence Question 25. The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are (a) 1 (b) 2 (c) 3 (d) 5 Answer: (d) 5

Question 26. Let us define a relation R in R as aRb if $a \ge b$. Then R is (a) an equivalence relation (b) reflexive, transitive but not symmetric

(c) symmetric, transitive but not reflexive

(d) neither transitive nor reflexive but symmetric

Answer:

(b) reflexive, transitive but not symmetric

Question 27.

Let $A = \{1, 2, 3\}$ and consider the relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$. Then R is

(a) reflexive but not symmetric

(b) reflexive but not transitive(c) symmetric and transitive

(d) neither symmetric, nor transitive

Answer:

(a) reflexive but not symmetric

Question 28.

```
The identity element for the binary operation * defined on Q – {0} as a * b = \frac{ab}{2} \forall a, b \in Q – {0)
```

is

(a) 1
(b) 0
(c) 2
(d) None of these Answer:
(c) 2

Question 29.

```
Let A = \{1, 2, 3, ..., n\} and B = \{a, b\}. Then the number of surjections from A into B is

(a) {}^{n}P_{2}

(b) 2^{n} - 2

(c) 2^{n} - 1

(d) none of these

Answer:

(b) 2^{n} - 2

Question 30.

Let f : R \to R be defind by f(x) = \frac{1}{x} \forall x \in R. Then f is

(a) one-one

(b) onto

(c) bijective

(d) f is not defined
```

Answer: (d) f is not defined

Question 31. Which of the following functions from Z into Z are bijective? (a) $f(x) = x^3$ (b) f(x) = x + 2(c) f(x) = 2x + 1(d) $f(x) = x^2 + 1$ Answer: (b) f(x) = x + 2Question 32. Let f : R \rightarrow R be the functions defined by f(x) = x³ + 5. Then f⁻¹(x) is (a) $(x+5)^{\frac{1}{3}}$ (b) $(x-5)^{\frac{1}{3}}$ (c) $(5-x)^{\frac{1}{3}}$ (d) 5 - xAnswer: (b) $(x-5)^{\frac{1}{3}}$ Question 33. Let $f: R - \{\frac{3}{5}\} \rightarrow R$ be defined by $f(x) = \frac{3x+2}{5x-3}$. Then (a) $f^{-1}(x) = f(x)$ (b) $f^{-1}(x) = -f(x)$ (c) (fof) x = -x(d) $f^{-1}(x) = \frac{1}{19} f(x)$ Answer: (a) $f^{-1}(x) = f(x)$ Question 34. Let $f: R \to R$ be given by $f(x) = \tan x$. Then $f^{-1}(1)$ is (a) $\frac{\pi}{4}$ (b) $\{n\pi + \frac{\pi}{4}; n \in Z\}$ (c) Does not exist (d) None of these Answer: (b) $\{n\pi + \frac{\pi}{4}; n \in Z\}$

Question 35.

Let R be a relation on the set N of natural numbers denoted by $nRm \Leftrightarrow n$ is a factor of m (i.e. $n \mid m$). Then, R is

(a) Reflexive and symmetric

(b) Transitive and symmetric

(c) Equivalence

(d) Reflexive, transitive but not symmetric

Answer:

(d) Reflexive, transitive but not symmetric

Question 36.

Let $S = \{1, 2, 3, 4, 5\}$ and let $A = S \times S$. Define the relation R on A as follows:

(a, b) R (c, d) iff ad = cb. Then, R is

(a) reflexive only

(b) Symmetric only

(c) Transitive only

(d) Equivalence relation

Answer:

(d) Equivalence relation

Question 37.

Let R be the relation "is congruent to" on the set of all triangles in a plane is

(a) reflexive

(b) symmetric

(c) symmetric and reflexive

(d) equivalence

Answer:

(d) equivalence

Question 38.

Total number of equivalence relations defined in the set $S = \{a, b, c\}$ is (a) 5 (b) 3! (c) 23 (d) 33 Answer: (a) 5

Question 39.

The relation R is defined on the set of natural numbers as $\{(a, b) : a = 2b\}$. Then, R⁻¹ is given by (a) $\{(2, 1), (4, 2), (6, 3), ...\}$ (b) $\{(1, 2), (2, 4), (3, 6),\}$ (c) R⁻¹ is not defined

(d) None of these Answer: (b) $\{(1, 2), (2, 4), (3, 6), \dots\}$ Question 40. Let $X = \{-1, 0, 1\}, Y = \{0, 2\}$ and a function $f : X \rightarrow Y$ defiend by $y = 2x^4$, is (a) one-one onto (b) one-one into (c) many-one onto (d) many-one into Answer: (c) many-one onto Question 41. Let f : R \rightarrow R be a function defined by $f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}}$ then f(x) is (a) one-one onto (b) one-one but not onto (c) onto but not one-one (d) None of these Answer: (d) None of these Question 42. Let $g(x) = x^2 - 4x - 5$, then (a) g is one-one on R (b) g is not one-one on R (c) g is bijective on R (d) None of these Answer: (b) g is not one-one on R Ouestion 43. Let A = R - {3}, B = R - {1}. Let f : A \rightarrow B be defined by $f(x) = \frac{x-2}{x-3}$. Then, (a) f is bijective (b) f is one-one but not onto (c) f is onto but not one-one (d) None of these Answer: (a) f is bijective

Question 44. The mapping $f: N \rightarrow N$ is given by $f(n) = 1 + n^2$, $n \in N$ when N is the set of natural numbers is

(a) one-one and onto (b) onto but not one-one (c) one-one but not onto (d) neither one-one nor onto Answer: (c) one-one but not onto Question 45. The function $f: R \rightarrow R$ given by $f(x) = x^3 - 1$ is (a) a one-one function (b) an onto function (c) a bijection (d) neither one-one nor onto Answer: (c) a bijection Question 46. Let $f: [0, \infty) \to [0, 2]$ be defined by $f(x) = \frac{2x}{1+x}$, then f is (a) one-one but not onto (b) onto but not one-one (c) both one-one and onto (d) neither one-one nor onto Answer: (a) one-one but not onto Question 47. If N be the set of all-natural numbers, consider $f: N \to N$ such that $f(x) = 2x, \forall x \in N$, then f is (a) one-one onto (b) one-one into (c) many-one onto (d) None of these Answer: (b) one-one into Question 48. Let A = {x : $-1 \le x \le 1$ } and f : A \rightarrow A is a function defined by f(x) = x |x| then f is (a) a bijection (b) injection but not surjection (c) surjection but not injection (d) neither injection nor surjection Answer: (a) a bijection

Question 49. Let $f : R \to R$ be a function defined by $f(x) = x^3 + 4$, then f is (a) injective (b) surjective (c) bijective (d) none of these Answer: (c) bijective

Question 50. If $f(x) = (ax^2 - b)^3$, then the function g such that $f\{g(x)\} = g\{f(x)\}$ is given by (a) $g(x) = \left(\frac{b-x^{1/3}}{a}\right)^{1/2}$ (b) $g(x) = \left(\frac{ax^2+b}{ax^2+b}\right)^3$ (c) $g(x) = (ax^2+b)^{1/3}$ (d) $g(x) = \left(\frac{x^{1/3}+b}{a}\right)^{1/2}$ Answer: (d) $g(x) = \left(\frac{x^{1/3}+b}{a}\right)^{1/2}$ Question 51. If $f: [1, \infty) \rightarrow [2, \infty)$ is given by $f(x) = x + \frac{1}{x}$, then f^{-1} equals to

(a) $\frac{x+\sqrt{x^2-4}}{2}$ (b) $\frac{x}{1+x^2}$ (c) $\frac{x-\sqrt{x^2-4}}{2}$ (d) $1 + \sqrt{x^2 - 4}$ Answer: (a) $\frac{x+\sqrt{x^2-4}}{2}$ Question 52. Let $f(x) = x^2 - x + 1$, $x \ge \frac{1}{2}$, then the solution of the equation $f(x) = f^{-1}(x)$ is (a) x = 1(b) x = 2(c) $x = \frac{1}{2}$ (d) None of these Answer: (a) x = 1 Question 53. Which one of the following function is not invertible? (a) $f : R \to R$, f(x) = 3x + 1(b) $f : R \to [0, \infty)$, $f(x) = x^2$ (c) $f : R^+ \to R^+$, $f(x) = \frac{1}{x^3}$ (d) None of these Answer: (d) None of these

Question 54. The inverse of the function $y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$ is (a) $\log_{10}(2 - x)$ (b) $\frac{1}{2} \log_{10} \left(\frac{1 + x}{1 - x} \right)$ (c) $\frac{1}{2} \log_{10} (2x - 1)$ (d) $\frac{1}{4} \log \left(\frac{2x}{2 - x} \right)$ Answer: (b) $\frac{1}{2} \log_{10} \left(\frac{1 + x}{1 - x} \right)$

Question 55.

If $f: R \rightarrow R$ defind by $f(x) = \frac{2x-7}{4}$ is an invertible function, then find f^{-1} . (a) $\frac{4x+5}{2}$ (b) $\frac{4x+7}{2}$ (c) $\frac{3x+2}{2}$ (d) $\frac{9x+3}{5}$ Answer: (b) $\frac{4x+7}{2}$

Question 56.

Consider the function f in A = R - $\{\frac{2}{3}\}$ defined as $f(x) = \frac{4x+3}{6x-4}$. Find f⁻¹.

(a) $\frac{3+4x}{6x-4}$ (b) $\frac{6x-4}{3+4x}$ (c) $\frac{3-4x}{6x-4}$ (d) $\frac{9+2x}{6x-4}$ Answer: (a) $\frac{3+4x}{6x-4}$ Question 57. If f is an invertible function defined as $f(x) = \frac{3x-4}{5}$, then f⁻¹(x) is

(a) 5x + 3(b) 5x + 4(c) $\frac{5x+4}{3}$ (d) $\frac{3x+2}{3}$ Answer: (c) $\frac{5x+4}{3}$

Question 58.

If $f: R \to R$ defined by $f(x) = \frac{3x+5}{2}$ is an invertible function, then find f^{-1} . (a) $\frac{2x-5}{3}$ (b) $\frac{x-5}{3}$ (c) $\frac{5x-2}{3}$ (d) $\frac{x-2}{3}$ Answer: (a) $\frac{2x-5}{3}$

Question 59.

Let $f: R \to R$, $g: R \to R$ be two functions such that f(x) = 2x - 3, $g(x) = x^3 + 5$. The function $(fog)^{-1}(x)$ is equal to

(a) $\left(\frac{x+7}{2}\right)^{1/3}$ (b) $\left(x - \frac{7}{2}\right)^{1/3}$ (c) $\left(\frac{x-2}{7}\right)^{1/3}$ (d) $\left(\frac{x-7}{2}\right)^{1/3}$ Answer: (d) $\left(\frac{x-7}{2}\right)^{1/3}$

Question 60.

Let * be a binary operation on set of integers I, defined by a * b = a + b - 3, then find the value of 3 * 4.

- (a) 2
- (b) 4
- (c) 7

(d) 6 Answer: (a) 7

(c) 7

Question 61.

If * is a binary operation on set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5. (a) 35

(b) 30

(c) 25

(d) 29

Answer:

(b) 30

Question 62.

Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b \in N. Find the value of 22 * 4.

(a) 1

(b) 2

(c) 3

(d) 4

Answer:

(b) 2

Question 63.

Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b \in Q. Find 2 * $\frac{1}{3}$

(a) $\frac{20}{3}$ (b) 4 (c) 18 (d) $\frac{16}{3}$ Answer: (a) $\frac{20}{3}$

Question 64. The domain of the function $f(x) = \frac{1}{\sqrt{\{\sin x\} + \{\sin(\pi + x)\}}}$ where $\{.\}$ denotes fractional part, is (a) $[0, \pi]$ (b) $(2n + 1) \pi/2$, $n \in \mathbb{Z}$ (c) $(0, \pi)$ (d) None of these Answer:

(d) None of these

Question 65.
Range of
$$f(x) = \sqrt{(1 - \cos x)\sqrt{(1 - \cos x) \cdot \dots \cdot \infty}}$$

(a) [0, 1]
(b) (0, 1)
(c) [0, 2]
(d) (0, 2)
Answer:
(c) [0, 2]