(Chapter 9)(Coordination compounds) XII

Intext Questions

Question 9.1:

Write the formulas for the following coordination compounds:

- (i) Tetraamminediaquacobalt(III) chloride
- (ii) Potassium tetracyanonickelate(II)
- (iii) Tris(ethane-1,2-diamine) chromium(III) chloride
- (iv) Amminebromidochloridonitrito-N-platinate(II)
- (v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
- (vi) Iron(III) hexacyanoferrate(II)

Answer

(i)
$$\left[CO(H_2O)_2(NH_3)_4 \right] Cl_3$$

(ii)
$$K_2[Ni(CN)_4]$$

(iii)
$$\left[\operatorname{Cr}(\operatorname{en})_{3}\right]\operatorname{Cl}_{3}$$

(vi) $\left[Pt(NH)_3 BrCl(NO_2) \right]^{-1}$

(v)
$$\left[PtCl_2(en)_2 \right] (NO_3)_2$$

(vi) $Fe_4 [Fe(CN)_6]_3$

Question 9.2:

Write the IUPAC names of the following coordination compounds:

- (i) [Co(NH₃)₆]Cl₃
- (ii) [Co(NH₃)₅Cl]Cl₂
- (iii) K₃[Fe(CN)₆]
- (iv) K₃[Fe(C₂O₄)₃]
- (**v**) K₂[PdCl₄]
- (vi) [Pt(NH₃)₂Cl(NH₂CH₃)]Cl

Answer

(i) Hexaamminecobalt(III) chloride

(ii) Pentaamminechloridocobalt(III) chloride

(iii) Potassium hexacyanoferrate(III)

(iv) Potassium trioxalatoferrate(III)

(v) Potassium tetrachloridopalladate(II)

(vi) Diamminechlorido(methylamine)platinum(II) chloride Question 9.3:

Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers:

- i. $K[Cr(H_2O)_2(C_2O_4)_2$
- ii. [Co(en)₃]Cl₃

Answer

i. Both geometrical (*cis-*, *trans-*) isomers for $K[Cr(H_2O)_2(C_2O_4)_2]$ can exist. Also, optical isomers for *cis*-isomer exist.

Trans-isomer is optically inactive. On the other hand, *cis*-isomer is optically active.

(ii) Two optical isomers for $\left[CO(en)_3\right]Cl_3$

exist.

Two optical isomers are possible for this structure.

Question 9.4:

Give evidence that $[Co(NH_3)_5CI]SO_4$ and $[Co(NH_3)_5SO_4]CI$ are ionization isomers.

Answer

When ionization isomers are dissolved in water, they ionize to give different ions. These ions then react differently with different reagents to give different products.

 $\begin{bmatrix} CO(NH_3)_5 CI \end{bmatrix} SO_4 + Ba^{2+} \longrightarrow BaSO_4 \downarrow$ White precipitate $\begin{bmatrix} CO(NH_3)_5 CI \end{bmatrix} SO_4 + Ag^+ \longrightarrow No \text{ reaction}$ $\begin{bmatrix} CO(NH_3)_5 SO_4 \end{bmatrix} CI + Ba^{2+} \longrightarrow No \text{ reaction}$ $\begin{bmatrix} CO(NH_3)_5 SO_4 \end{bmatrix} CI + Ag^+ \longrightarrow AgCI \downarrow$

White precipitate

Question 9.5:

Explain on the basis of valence bond theory that $[Ni(CN)_4]^{2-}$ ion with square planar structure is diamagnetic and the $[NiCl_4]^{2-}$ ion with tetrahedral geometry is paramagnetic.

Answer

Ni is in the +2 oxidation state i.e., in d^8 configuration.

d ⁸ configuration :	[t] t] t] t] t			
	3 <i>d</i>	4.8	4p	4 <i>d</i>

There are 4 CN⁻ ions. Thus, it can either have a tetrahedral geometry or square planar geometry. Since CN⁻ ion is a strong field ligand, it causes the pairing of unpaired 3d electrons.

It now undergoes dsp² hybridization. Since all electrons are paired, it is diamagnetic. In case of $[NiCl_4]^{2-}$, Cl^- ion is a weak field ligand. Therefore, it does not lead to the pairing of unpaired 3*d* electrons. Therefore, it undergoes *sp*³ hybridization.

Since there are 2 unpaired electrons in this case, it is paramagnetic in nature.

Question 9.6:

 $[NiCl_4]^{2-}$ is paramagnetic while $[Ni(CO)_4]$ is diamagnetic though both are tetrahedral. Why?

Answer

Though both $[NiCl_4]^{2-}$ and $[Ni(CO)_4]$ are tetrahedral, their magnetic characters are different. This is due to a difference in the nature of ligands. Cl⁻ is a weak field ligand and it does not cause the pairing of unpaired 3*d* electrons. Hence, $[NiCl_4]^{2-}$ is paramagnetic.

Ni ⁺²	11 11 11 1 1 1				ĺ
	3.1	4.	40	41	

In Ni(CO)₄, Ni is in the zero oxidation state i.e., it has a configuration of $3d^8 4s^{2}$.

But CO is a strong field ligand. Therefore, it causes the pairing of unpaired 3d electrons. Also, it causes the 4s electrons to shift to the 3d orbital, thereby giving rise to sp^3 hybridization. Since no unpaired electrons are present in this case, [Ni(CO)₄] is diamagnetic.

Question 9.7:

 $[Fe(H_2O)_6]^{3+}$ is strongly paramagnetic whereas $[Fe(CN)_6]^{3-}$ is weakly paramagnetic. Explain.

Answer

In both $\left[Fe(H_2O)_6\right]^{3+}$ and $\left[Fe(CN)_6\right]^{3-}$, Fe exists in the +3 oxidation state i.e., in d^5 configuration.

d² 1 1 1 1 1

Since CN^- is a strong field ligand, it causes the pairing of unpaired electrons. Therefore, there is only one unpaired electron left in the *d*-orbital.

Therefore,

$$\mu = \sqrt{n(n+2)}$$
$$= \sqrt{1(1+2)}$$
$$= \sqrt{3}$$
$$= 1.732 \text{ BM}$$

On the other hand, H_2O is a weak field ligand. Therefore, it cannot cause the pairing of electrons. This means that the number of unpaired electrons is 5.

$$\mu = \sqrt{n(n+2)}$$
$$= \sqrt{5(5+2)}$$
$$= \sqrt{35}$$
$$\approx 6 \,\mathrm{BM}$$

Thus, it is evident that $\left[Fe(H_2O)_6\right]^{3+}$ is strongly paramagnetic, while $\left[Fe(CN)_6\right]^{3-}$ is weakly paramagnetic.

Question 9.8:

Explain $[Co(NH_3)_6]^{3+}$ is an inner orbital complex whereas $[Ni(NH_3)_6]^{2+}$ is an outer orbital complex.

Answer

$[Co(NH_3)_6]^{3+}$	$\left[\operatorname{Ni}(\operatorname{NH}_3)_6\right]^{2+}$	
Oxidation state of cobalt = $+3$	Oxidation state of Ni = $+2$	
Electronic configuration of cobalt = d^6	Electronic configuration of nickel = d^8	

Question 9.9:

Predict the number of unpaired electrons in the square planar $[Pt(CN)_4]^{2-}$ ion.

Answer

 $\left[Pt(CN)_{4} \right]^{2-}$

In this complex, Pt is in the +2 state. It forms a square planar structure. This means that it undergoes dsp^2 hybridization. Now, the electronic configuration of Pd(+2) is $5d^8$.

[<u>ti[ti[ti[t]</u>]] 3*d*⁶

CN[−] being a strong field ligand causes the pairing of unpaired electrons. Hence, there are

no unpaired electrons in $\left[Pt(CN)_{4} \right]^{2-}$.

Question 9.10:

The hexaquo manganese(II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using Crystal Field Theory. Answer

 $\left[Mn(CN)_{6} \right]^{4}$ $\left[Mn(H_2O)_6\right]^{2+}$

Mn is in the +2 oxidation state.

Mn is in the +2 oxidation state.

The electronic configuration is d^{5.}

The electronic configuration is d⁵. The crystal field is octahedral. Cyanide is The crystal field is octahedral. Water is a a strong field ligand. Therefore, the weak field ligand. Therefore, the arrangement of the electrons in arrangement of the electrons in

$$\left[Mn(H_2O)_6\right]^{2+}$$
 $\left[Mn(CN)_6\right]^{4-}$ is t2g3eg2.

T2g5eg0.

Hence, hexaaquo manganese (II) ion has five unpaired electrons, while hexacyano ion has only one unpaired electron.

Question 9.11:

Calculate the overall complex dissociation equilibrium constant for the $Cu(NH_3)_4^{2+}$ ion,

given that β_4 for this complex is 2.1 × 10¹³. Answer

 $\beta_4 = 2.1 \times 10^{13}$

The overall complex dissociation equilibrium constant is the reciprocal of the overall stability constant, β_4 .

$$\frac{1}{\beta_4} = \frac{1}{2.1 \times 10^{13}}$$

$$\therefore = 4.7 \times 10^{-14}$$

