(Chapter 9)(Coordination compounds) XII

Intext Questions

Question 9.1:

Write the formulas for the following coordination compounds:
(i) Tetraamminediaquacobalt(III) chloride
(ii) Potassium tetracyanonickelate(II)
(iii) Tris(ethane-1,2-diamine) chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
(vi) Iron(III) hexacyanoferrate(II)

Answer
(i) $\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{3}$
(ii)

(iii) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$
(vi) $\quad\left[\mathrm{Pt}(\mathrm{NH})_{3} \mathrm{BrCl}\left(\mathrm{NO}_{2}\right)\right]^{-}$
(v) $\left[\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$
(vi)

$$
\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}
$$

Question 9.2:
Write the IUPAC names of the following coordination compounds:
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(iii) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(iv) $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(v) $\mathrm{K}_{2}\left[\mathrm{PdCl}_{4}\right]$
(vi) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)\right] \mathrm{Cl}$

Answer

(i) Hexaamminecobalt(III) chloride
(ii) Pentaamminechloridocobalt(III) chloride
(iii) Potassium hexacyanoferrate(III)
(iv) Potassium trioxalatoferrate(III)
(v) Potassium tetrachloridopalladate(II)
(vi) Diamminechlorido(methylamine)platinum(II) chloride Question 9.3:

Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers:
i. $\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right.$
ii. $\quad\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{\mathrm{Cl}}^{3}$
iii. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$ iv. $\quad\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{2}\right]$

Answer

i. Both geometrical (cis-, trans-) isomers for $\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$ can exist. Also, optical isomers for cis-isomer exist.

Geometrical isomers

Trans

Cis

Trans-isomer is optically inactive. On the other hand, cis-isomer is optically active.

(ii) Two optical isomers for $\left[\mathrm{CO}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$

exist.

Two optical isomers are possible for this structure.

(iii) $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$

A pair of optical isomers:

It can also show linkage isomerism.

$$
\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \text { and }\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]\left(\mathrm{NO}_{3}\right)_{2}
$$

It can also show ionization isomerism.

(iv) Geometrical (cis-, trans-) isomers of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{2}\right]$ can exist.

Cis

Trans

Question 9.4:

Give evidence that $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$ are ionization isomers.
Answer
When ionization isomers are dissolved in water, they ionize to give different ions. These ions then react differently with different reagents to give different products.

$$
\begin{aligned}
& {\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}+\mathrm{Ba}^{2+} \longrightarrow \mathrm{BaSO}_{4} \downarrow} \\
& {\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}+\mathrm{Ag}^{+} \longrightarrow \text { No reaction }} \\
& {\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}+\mathrm{Ba}^{2+} \longrightarrow \text { No reaction }} \\
& {\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}+\mathrm{Ag}^{+} \longrightarrow \mathrm{AgCl} \downarrow}
\end{aligned}
$$

White precipitate

Question 9.5:

Explain on the basis of valence bond theory that $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ ion with square planar structure is diamagnetic and the $\left[\mathrm{NiCl}_{4}\right]^{2-}$ ion with tetrahedral geometry is paramagnetic.

Answer

Ni is in the +2 oxidation state i.e., in d^{8} configuration.

d^{8} configuration: | +1 | 1 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |

3d

45
$4 p$

$4 d$

There are $4 \mathrm{CN}^{-}$ions. Thus, it can either have a tetrahedral geometry or square planar geometry. Since CN^{-}ion is a strong field ligand, it causes the pairing of unpaired $3 d$ electrons.

It now undergoes dsp^{2} hybridization. Since all electrons are paired, it is diamagnetic. In case of $\left[\mathrm{NiCl}_{4}\right]^{2-}, \mathrm{Cl}^{-}$ion is a weak field ligand. Therefore, it does not lead to the pairing of unpaired $3 d$ electrons. Therefore, it undergoes $s p^{3}$ hybridization.

Since there are 2 unpaired electrons in this case, it is paramagnetic in nature.

Question 9.6:

$\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic while $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic though both are tetrahedral.
Why?

Answer

Though both $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are tetrahedral, their magnetic characters are different. This is due to a difference in the nature of ligands. Cl^{-}is a weak field ligand and it does not cause the pairing of unpaired $3 d$ electrons. Hence, $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic.
$\mathrm{Ni}^{+2}+4|+|+|+|t|$
$3 d$ \square

$4 d$

In $\mathrm{Ni}(\mathrm{CO})_{4}, \mathrm{Ni}$ is in the zero oxidation state i.e., it has a configuration of $3 d^{8} 4 s^{2}$.

$3 d$

$4 p$

$4 d$

But CO is a strong field ligand. Therefore, it causes the pairing of unpaired 3d electrons. Also, it causes the 4 s electrons to shift to the 3 d orbital, thereby giving rise to $s p^{3}$ hybridization. Since no unpaired electrons are present in this case, $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic.

Question 9.7:

$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is strongly paramagnetic whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is weakly paramagnetic.
Explain.
Answer
In both $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, Fe exists in the +3 oxidation state i.e., in d^{5} configuration.

Since CN^{-}is a strong field ligand, it causes the pairing of unpaired electrons. Therefore, there is only one unpaired electron left in the d-orbital.
\square
Therefore,

$$
\begin{aligned}
\mu & =\sqrt{n(n+2)} \\
& =\sqrt{1(1+2)} \\
& =\sqrt{3} \\
& =1.732 \mathrm{BM}
\end{aligned}
$$

On the other hand, $\mathrm{H}_{2} \mathrm{O}$ is a weak field ligand. Therefore, it cannot cause the pairing of electrons. This means that the number of unpaired electrons is 5 .
Therefore,

$$
\begin{aligned}
\mu & =\sqrt{n(n+2)} \\
& =\sqrt{5(5+2)} \\
& =\sqrt{35} \\
& \simeq 6 \mathrm{BM}
\end{aligned}
$$

Thus, it is evident that $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is strongly paramagnetic, while $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is weakly paramagnetic.

Question 9.8:

Explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is an inner orbital complex whereas $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is an outer orbital complex.

Answer

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
Oxidation state of cobalt $=+3$	Oxidation state of $\mathrm{Ni}=+2$
Electronic configuration of cobalt $=d^{6}$	Electronic configuration of nickel $=d^{8}$

\section*{| +1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
 $3 d$

 $4 p$

 $4 d$}

NH_{3} being a strong field ligand causes the pairing. Therefore, Ni can undergo $d^{2} s p^{3}$ hybridization.

Hence, it is an inner orbital complex.

If NH_{3} causes the pairing, then only one $3 d$ orbital is empty. Thus, it cannot undergo $d^{2} s p^{3}$ hybridization. Therefore, it undergoes $s p^{3} d^{2}$ hybridization.

Hence, it forms an outer orbital complex.

Question 9.9:

Predict the number of unpaired electrons in the square planar $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ion.
Answer

In this complex, Pt is in the +2 state. It forms a square planar structure. This means that it undergoes $d_{s p}{ }^{2}$ hybridization. Now, the electronic configuration of $\operatorname{Pd}(+2)$ is $5 d^{8}$.
$3 d^{s}$
CN^{-}being a strong field ligand causes the pairing of unpaired electrons. Hence, there are no unpaired electrons in $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$.

Question 9.10:

The hexaquo manganese(II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using Crystal Field Theory. Answer
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$

Mn is in the +2 oxidation state.
The electronic configuration is d^{5}.

Mn is in the +2 oxidation state.
The electronic configuration is d^{5}.
The crystal field is octahedral. Cyanide is The crystal field is octahedral. Water is a a strong field ligand. Therefore, the weak field ligand. Therefore, the arrangement of the electrons in arrangement of the electrons in

$$
\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}
$$

$$
\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-} \text { is }
$$

is t2g3eg2.
T2g5eg0.

Hence, hexaaquo manganese (II) ion has five unpaired electrons, while hexacyano ion has only one unpaired electron.

Question 9.11:

Calculate the overall complex dissociation equilibrium constant for the $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$ ion, given that β_{4} for this complex is 2.1×10^{13}. Answer
$\beta_{4}=2.1 \times 10^{13}$
The overall complex dissociation equilibrium constant is the reciprocal of the overall stability constant, β_{4}.

$$
\begin{aligned}
\frac{1}{\beta_{4}} & =\frac{1}{2.1 \times 10^{13}} \\
\therefore \quad & =4.7 \times 10^{-14}
\end{aligned}
$$

